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1. ЗАГАЛЬНІ ВІДОМОСТІ 

Лабораторний практикум охоплює усі змістові модулі навчальної програми 

дисципліни «Системи обробки знань» та призначений для здобувачів закладів 

вищої освіти, що навчаються за спеціальністю F3 «Комп’ютерні науки» освітньо-

професійної програми «Управління інформацією та аналітика даних» денної 

форми навчання. 

Метою виконання лабораторних робіт є закріплення у здобувачів знань і 

вмінь із дисципліни «Системи обробки знань», набуття навичок використання 

сучасних технологій обробки знань для подальшого їх використання у своїх 

наукових дослідженнях та професійній діяльності. 

Завданням лабораторного практикуму є допомога здобувачам в опануванні 

методів обробки знань, які розглядаються в рамках навчальної дисципліни. В 

цьому практикумі викладено загальні рекомендації щодо створення та 

використання систем обробки знань, наведено короткі теоретичні відомості, 

завдання та індивідуальні варіанти для виконання лабораторних робіт, запитання 

для самоконтролю та рекомендовану літературу. 

Лабораторні роботи з дисципліни «Системи обробки знань» розроблено 

відповідно до робочої програми навчальної дисципліни. 

Методичні вказівки складаються з чотирьох лабораторних робіт, до яких 

наведено завдання та індивідуальні варіанти, а також у теоретичній частині 

послідовно описано різні типи завдань із обробки знань, розглянутих у рамках 

навчальної дисципліни. 

Виконання кожної лабораторної роботи передбачає ознайомлення 

здобувачів із методичними вказівками та теоретичну підготовку з відповідних 

розділів дисципліни «Системи обробки знань». 

Для виконання лабораторних робіт при створенні програмних засобів 

можна використовувати довільні сучасні мови програмування (зокрема Python, C# 

тощо), а також довільні середовища розроблення програмних засобів (IDE). 

Для здачі лабораторної роботи здобувач має оформити звіт, який містить: 

 титульний аркуш; 

 формулювання завдання; 

 індивідуальний варіант; 

 опис ходу виконання роботи; 

 висновки. 

Бали, отримані за виконання лабораторних робіт, підсумовуються та 

враховуються при виставленні підсумкової оцінки з навчальної дисципліни. 
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2. ПРАВИЛА ТЕХНІКИ БЕЗПЕКИ 

ПРИ ВИКОНАННІ ЛАБОРАТОРНИХ РОБІТ 

Загальні положення  

1. До роботи в комп’ютерному класі допускаються особи, ознайомлені з даною 

інструкцією з техніки безпеки та правил поведінки.  

2. Робота здобувачів у комп’ютерному класі дозволяється лише у присутності 

викладача (інженера, лаборанта).  

3. Під час занять сторонні особи можуть знаходитися в класі лише з дозволу 

викладача.  

4. Під час перерв між парами проводиться обов’язкове провітрювання 

комп’ютерного кабінету з обов’язковим виходом здобувачів з нього.  

Перед початком роботи необхідно:  

1. Переконатися у відсутності видимих пошкоджень на робочому місці.  

2. Включити комп’ютери та налагодити роботу.  

При роботі в комп’ютерному класі забороняється:  

1. Знаходитися в класі у верхньому одязі.  

2. Класти одяг і сумки на столи.  

3. Знаходитися в класі з напоями та їжею.  

4. Розташовуватися збоку або ззаду від включеного монітора.  

5. Приєднувати або від’єднувати кабелі, чіпати роз’єми, дроти і розетки.  

6. Пересувати комп’ютери і монітори.  

7. Відкривати системний блок.  

8. Вмикати і вимикати комп’ютери самостійно.  

9. Намагатися самостійно усувати несправності в роботі апаратури.  

10. Перекривати вентиляційні отвори на системному блоці та моніторі.  

11. Ударяти по клавіатурі, натискувати безцільно на клавіші.  

12. Приносити і запускати комп’ютерні ігри.  

Перебуваючи в комп’ютерному класі, здобувачі зобов’язані:  

1. Дотримуватись тиші і порядку.  

2. Виконувати вимоги викладача та інженера/лаборанта.  

3. Дотримуватись режиму роботи.  

4. Після роботи завершити всі активні програми і коректно вимкнути комп’ютер.  

5. Залишити робоче місце чистим.  

Необхідно дотримуватись правил:  

1. Відстань від екрану до очей — 70–80 см.  

2. Вертикально пряма спина.  

3. Плечі опущені і розслаблені.  

4. Ноги на підлозі і не схрещені.  

5. Лікті, зап’ястя і кисті рук на одному рівні.  

Вимоги безпеки в аварійних ситуаціях:  

1. При появі програмних помилок або збоях устаткування здобувач повинен 

негайно звернутися до викладача (інженера/лаборанта).  

2. При появі запаху гару, незвичайного звуку негайно припинити роботу і 

повідомити викладача (інженера/лаборанта). 
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3. ПЕРЕЛІК ТА ОПИС КОМПЕТЕНТНОСТЕЙ, 

ЩО ФОРМУЮТЬСЯ У ЗДОБУВАНА 

ПІД ЧАС ЛАБОРАТОРНИХ ЗАНЯТЬ 

Мета дисципліни — надати здобувачам освіти уявлення про сучасні 

підходи комп’ютерних наук до опису та моделювання знань у інформаційних 

системах. Програма містить розділи, присвячені семантичним мережам, 

автоматичному збиранню, опрацюванню та генерації текстів, а також 

видобуванню та аналізу знань, які вони містять. Завданнями навчальної 

дисципліни є набуття теоретичних знань і практичних навичок щодо створення 

баз знань, обробки знань, методів комп’ютерної лінгвістики та опрацювання 

природної мови, аналізу текстів тощо для розв’язання прикладних завдань 

(збирання та аналіз текстів із різних джерел, автореферування, перевірка 

правопису, автокорекція, класифікація тексту за тематикою, генерація тексту, 

створення чат-ботів і т.д.). 

Технології, що вивчаються в рамках дисципліни: мова програмування 

Python; бібліотеки NLTK, Beautiful Soup, Telethon, Instaloader, Chatterbot та інші; 

середовище розроблення ПЗ JetBrains PyCharm і аналоги; технологія Semantic 

Web і словник WordNet; інтерфейси API соцмереж, месенджерів і сайтів 

статистичних даних; мовні моделі GPT і аналоги. 

Міждисциплінарні зв’язки: пререквізитами є дисципліни «Іноземна мова: 

практичні навики наукової комунікації» та «Прикладний аналіз даних мовами 

VBA та Python». У подальшому знання та навички, набуті на дисципліні 

«Системи обробки знань», можуть використовуватися при моделюванні знань у 

предметній галузі та при реалізації завдань опрацювання текстових та інших 

даних під час виконання випускних кваліфікаційних робіт. 

Згідно з вимогами освітньо-професійної програми «Управління 

інформацією та аналітика даних» здобувачі повинні набути здатності отримувати 

компетентності: 

інтегральна: 

 здатність розв’язувати задачі дослідницького та/або інноваційного 

характеру у сфері комп’ютерних наук. 

загальні: 

 здатність до абстрактного мислення, аналізу та синтезу; 

 здатність застосовувати знання у практичних ситуаціях; 

 здатність вчитися й оволодівати сучасними знаннями; 

 здатність бути критичним і самокритичним; 

 здатність генерувати нові ідеї (креативність). 

фахові: 

 здатність формалізувати предметну область певного проєкту у вигляді 

відповідної інформаційної моделі. 

 здатність збирати і аналізувати дані (включно з великими), для 

забезпечення якості прийняття проєктних рішень. 
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 здатність застосовувати існуючі і розробляти нові алгоритми 

розв’язування задач у галузі комп’ютерних наук. 

 здатність розробляти програмне забезпечення відповідно до 

сформульованих вимог з урахуванням наявних ресурсів та обмежень. 

Здобувачі повинні досягти таких програмних результатів навчання: 

 мати спеціалізовані концептуальні знання, що включають сучасні 

наукові здобутки у сфері комп’ютерних наук і є основою для 

оригінального мислення та проведення досліджень, критичне 

осмислення проблем у сфері комп’ютерних наук та на межі галузей 

знань. 

 розробляти алгоритмічне та програмне забезпечення для аналізу 

даних (включно з великими). 

 проектувати та супроводжувати бази даних та знань. 

 

 

 

4. РЕКОМЕНДАЦІЇ ДО ВИКОНАННЯ ЛАБОРАТОРНИХ РОБІТ 

Виконання лабораторної роботи передбачає ознайомлення здобувача з 

методичними вказівками до відповідної лабораторної роботи, його теоретичну та 

практичну підготовку з відповідних розділів дисципліни.  

Звіт до лабораторної роботи має бути оформлено відповідно до вимог: 

титульна сторінка роботи має бути оформлена за шаблоном, наведеним у додатку 

А, містити завдання та дані індивідуального варіанту, повний код програм(и) та 

знімки екранів результатів виконання. 

Звіти лабораторних робіт виконуються в текстовому редакторі та 

надсилаються в електронній формі на платформу дистанційного навчання 

університету. 

Робота, виконана з порушеннями наведених вимог, не зараховується і 

повертається здобувачу для доопрацювання. Робота, що виконана (повністю або 

частково) за неправильним варіантом, не зараховується. 
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ЛАБОРАТОРНА РОБОТА 1. 

Semantic Web і визначення подібності слів 

Мета: навчитися працювати з семантичними мережами, словником 

WordNet і визначати подібність слів за їхніми значеннями через методи 

обчислення семантичної близькості, а також подібність за написанням через 

відстань редагування. 

 

Завдання 

Значення по індивідуальних варіантах наведено нижче в табл. 1. Варіант 

визначається як порядковий номер здобувача в загальному списку групи. 

У завданнях №№ 2–4 слід брати до уваги лише значення іменників. 

У завданні № 4 можна взяти лише перше значення кожного іменника. 

Для реалізації завдання № 6 можна скористатись кодом із лекції. 

 

1. Створити новий консольний проєкт мовою Python (або іншою) при запуску 

вивести власне прізвище, ім’я, групу, номер ЛР. Імпортувати до проєкту 

бібліотеку NLTK (або аналог) і корпус WordNet, який містить семантичний 

словник англійської мови. 

2. Вивести в консоль визначення (тлумачення) для всіх семантичних значень 

іменника 1 і іменника 2 за індивідуальним варіантом. 

3. Вивести в консоль усі гіпоніми та гіпероніми для цих же слів. 

4. Обчислити семантичну подібність іменника 1 і іменника 2 за допомогою 

методів: 

 Path Distance Similarity 

 Wu-Palmer Similarity 

 Leacock Chodorow Similarity 

5. Знайти відстань редагування (Левенштейна) між іменником 1 і іменником 2. 

При цьому можна обчислювати відстань або реалізувавши код алгоритму 

вручну, або скориставшись наявними вбудованими функціями бібліотек. 

6. Попросити користувача ввести довільне слово англійською мовою. Знайти до 

цього слова N (за індивідуальним варіантом) найближчих слів із наявного 

словника в долученому до завдання текстовому файлі 1–1000.txt. 

7. Завдання на максимальний бал: взяти як джерело даних текстовий файл за 

індивідуальним варіантом, після чого: 

 знайти всі слова, які зустрічаються в цьому файлі; 

 відсортувати їх за за спаданням частотності; 

 створити новий текстовий файл і зберегти в ньому відсортовані слова 

за зразком 1–1000.txt: кожне наступне слово з нового рядка; 

 реалізувати для користувача той же функціонал, що і в завданні № 6, 

але замість 1–1000.txt використати як словник новостворений файл. 

8. Помістити у звіт із ЛР повний код програм(и) та скриншоти результатів 

роботи. 
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Табл. 1. Індивідуальні варіанти до лабораторної роботи № 1 

№ Іменник 1 Іменник 2 N Файл 

1 quality quantity 4 alcott-women.txt 

2 employer employee 5 austen-emma.txt 

3 hell bell 6 austen-persuasion.txt 

4 Sunday Monday 7 austen-sense.txt 

5 expression impression 8 bronte-eyre.txt 

6 mountain fountain 9 bronte-heights.txt 

7 money honey 4 bryant-stories.txt 

8 stone bone 5 carroll-alice.txt 

9 pain gain 6 carroll-glass.txt 

10 might right 7 chesterton-ball.txt 

11 lizard wizard 8 chesterton-brown.txt 

12 cat rat 9 chesterton-thursday.txt 

13 chance dance 4 edgeworth-parents.txt 

14 beach peach 5 melville-moby_dick.txt 

15 sun fun 6 milton-paradise.txt 

16 name game 7 alcott-women.txt 

17 winner loser 8 austen-emma.txt 

18 grace face 9 austen-persuasion.txt 

19 word world 4 austen-sense.txt 

20 love leave 5 bronte-eyre.txt 

21 tear fear 6 bronte-heights.txt 

22 career Korea 7 bryant-stories.txt 

23 lust trust 8 carroll-alice.txt 

24 pleasure treasure 9 carroll-glass.txt 

25 violence silence 4 chesterton-ball.txt 

26 ace base 5 chesterton-brown.txt 

27 life line 6 chesterton-thursday.txt 

28 pen pan 7 edgeworth-parents.txt 

29 pineapple apple 8 melville-moby_dick.txt 

30 forgiveness forgetfulness 9 milton-paradise.txt 

 

Теоретичні відомості 

Сучасні технології обробки знань, зокрема для різноманітного опрацювання 

текстів, передбачають використання мов програмування високого рівня, а також 

відповідних бібліотек і модулів для них. Необхідні засоби розроблено для 

багатьох об’єктно-орієнтованих і функціональних мов програмування, серед яких 

Python, C# та інші. Тим не менше, в останні роки одним із лідерів у галузях 

опрацювання природної мови та роботи зі штучним інтелектом лишається саме 

Python [6]. Для цієї мови створено цілий ряд модулів, які широко 

використовуються для розв’язання відповідних завдань. 
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Що стосується середовищ розроблення (IDE), для Python доступні різні 

засоби, серед яких PyCharm, PyDev, NetBeans, Visual Studio Code, IDLE тощо. В 

цьому курсі приклади роботи реалізовано через середовище PyCharm, розроблене 

компанією JetBrains. Воно має як повноцінну професійну (Professional), так і 

безкоштовну (Community) версії. Також є можливість використання академічних 

ліцензій для здобувачів при вивченні програмування та роботі над навчальними 

проєктами. 

NLTK [7] (від англ. Natural Language Toolkit — набір інструментів для 

природної мови) є набором бібліотек для Python, призначених для опрацювання 

природної мови, роботи з текстами, корпусами та іншими лексичними ресурсами, 

зокрема словниками тощо. Вона розробляється з 2001 року і за цей час увібрала в 

себе величезну кількість корисних та ефективних інструментів. 

Серед розробників NLTK — такі фахівці, як Steven Bird, Ewan Klein та 

Edward Loper. У 2009 р. вони видали підручник із використання цієї бібліотеки — 

«Natural Language Processing with Python», який відтоді став класичним виданням 

щодо опрацювання природної мови в цілому. Книга містить масу наочних 

прикладів щодо застосування окремих методів, наявних у NLTK. Безкоштовна 

вебверсія цього видання з теорією та зразками коду доступна в інтернеті на 

офіційному сайті самої бібліотеки [1]. 

Аби встановити та використовувати NLTK у середовищі PyCharm, можна 

натиснути на пункт «Configure Python Interpreter» біля коліщатка налаштувань у 

вікні коду (праворуч згори або знизу). Далі слід обрати зі списку «Interpreter 

Settings...», і у вікні, що відкриється, клацнути на іконку «+» або натиснути Ctrl+N 

для завантаження нових модулів. Ввівши у полі пошуку NLTK, можна побачити 

цей модуль у списку, за необхідності праворуч обрати необхідну версію та 

встановити її, клацнувши на кнопку «Install». Якщо завантаження буде успішним, 

з’явиться зелена підсвітка, і після цього бібліотеку можна використовувати в коді. 

Для посилання на NLTK слід виконати імпорт: 

 
import nltk 

 

Після цього можна застосовувати в коді майже всі засоби бібліотеки. Проте 

якщо передбачається робота з корпусами текстів чи іншими ресурсами, їх слід 

встановити окремо. Річ у тому, що вони не включені до комплектації самої NLTK 

через завеликі обсяги даних. Отже, завантажити необхідні саме Вам компоненти 

слід вручну, викликавши в коді наступну функцію: 

 
nltk.download() 

 

Після запуску такої програми має автоматично відкритись вікно «NLTK 

Downloader». У ньому через графічний інтерфейс можна обрати потрібну вкладку 

(збірки; корпуси; моделі; все разом) і рядки з окремими компонентами, після чого 

натиснути кнопку «Download» і встановити їх собі на комп’ютер. 

Зверніть увагу, що на цьому етапі в цьому ж вікні також можна відразу 

обрати диск і папку, куди саме будуть завантажуватись усі ці ресурси. За 
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замовчуванням це папка з назвою «nltk_data», яка створюється в корені диска C:\, 

D:\ або іншого доступного для програми. При виборі розташування цієї папки 

майте на увазі, що деякі з корпусів є досить об’ємними, а якщо встановити все 

разом, то в сумі вони можуть зайняти декілька гігабайт. Тож переконайтеся, що у 

відповідному місці є необхідний обсяг вільного простору. 

Після використання в коді команди nltk.download() не забудьте 

закоментувати або видалити її, якщо при подальших запусках програми не 

плануєте довантажувати інші ресурси. 

Для перевірки, чи все встановилось правильно, можна провести такий тест: 
 

from nltk.corpus import gutenberg 
 
words = gutenberg.words("chesterton-thursday.txt") 
print(len(words), "words found") 
 

Ця програма повинна видати в консоль результат на кшталт «69213 words 

found» — за умови, що попередньо було завантажено корпус Gutenberg із вкладки 

«Corpora». Вищенаведений код звертається до текстового файлу, який містить 

текст книги Честертона «Людина, що була Четвергом», у зазначеному корпусі, 

підраховує кількість слів у ньому та виводить отримане число на екран. 

Отже, якщо все це пройшло успішно, надалі можна аналогічно посилатись у 

коді на інші корпуси та ресурси NLTK. За назвою ресурсу інтерпретатор 

автоматично буде знаходити розташування потрібних папок і файлів на 

комп’ютері, викликати та використовувати їх при виконанні програми. 

Семантичні мережі, або Semantic Web (дослівно — «семантична павутина») 

є технологією, яка являє собою надбудову над звичайним World Wide Web, тобто 

інтернетом як всесвітньою мережею обміну даними. 

Якщо звернутись до історії розвитку ІТ та мереж, то спершу було створено 

апаратні та програмні засоби для взаємодії комп’ютерів між собою на локальному 

рівні. Після цього мережі поступово розростались і згодом стали охоплювати всю 

земну кулю. Розширилися сфери їх застосування та зросла кількість користувачів. 

З’явилися вебсайти, браузери та пошукові машини. 

Однак пошук інформації в інтернеті лишався досить складним завданням 

доти, доки це відбувалося шляхом використання класичних методів пошуку даних 

у текстах, а саме за повною збіжністю символьних рядків. Справді, коли стоїть 

загальне завдання знайти інформацію за певною темою, то доволі важко 

передбачити, які саме конкретні слова та формулювання буде використано в 

документах, що відповідають заданій тематиці. 

Якщо проводити пошук за одним ключовим словом, завдання спрощується. 

Проте навіть одне слово може зустрічатись у текстах у різних відмінках чи інших 

граматичних формах, що ускладнює процес його знаходження. Крім того, існують 

різні варіанти написання, скорочені форми та абревіатури, а також цілі 

синонімічні ряди для того самого поняття. В таких випадках дослівний, 

буквальний пошук видаватиме лише обмежений набір результатів порівняно із 

зазвичай значно більшим обсягом документів, які насправді можуть бути 

релевантними, тобто відповідними по суті до поставленої мети пошуку. 



 12 

Аби розв’язати ці проблеми, з’явилися семантичні мережі, які доповнюють 

дані додатковими — метаданими, що описують наявні. Головною тут є семантика, 

тобто зміст, значення слів. Якщо розмітити в текстах усі слова та їхні форми саме 

їхніми значеннями, стає можливим пошук не за тотожністю рядків, а за суттю 

того, про що йдеться в цих текстах. Таким чином полегшується машинне 

опрацювання даних і з’являється змога видавати у відповідь на пошук не лише 

повні збіжності по тексту, а й усі можливі форми слів, варіації, синоніми тощо. 

Однією з ключових технологій семантичних мереж є словник WordNet. Це 

лексична база даних, яка містить інформацію про семантику слів. Цей словник 

було розроблено саме для англійської мови, проте пізніше з’явилися спроби 

реалізувати щось подібне і для інших природних мов. Такі спроби мали різний 

успіх. Зокрема деякі дослідження щодо створення WordNet для української були 

започатковані в 2009 році в університеті «Львівська політехніка». 

Що стосується використання оригінального WordNet для англійської, він за 

потреби завантажується аналогічно до інших корпусів у NLTK. Після цього 

можемо імпортувати та використовувати в коді всі ресурси та функції цього 

словника. Між іншим, одним зі зручних способів посилання на модулі в Python є 

створення коротких псевдонімів, як у наступному прикладі: 

 
from nltk.corpus import wordnet as wn 

 

Тож надалі в коді посилатимемось на WordNet саме за коротким іменем wn. 

Словник WordNet зберігає значення слів і відношення між ними. При цьому 

слід пам’ятати, що слова не є тотожними їхнім семантичним значенням. І це є 

ключовою особливістю WordNet і подібних засобів. 

Дійсно, одне й те саме слово може мати більш ніж десяток різних значень і 

їхніх відтінків. У цьому можна переконатися, відкривши будь-який тлумачний 

словник. Це стосується багатьох природних мов, зокрема й української. Скажімо, 

слово «коса» може означати як зачіску, так і знаряддя праці чи піщаний півострів. 

Такі слова називають омонімами, і подібних прикладів безліч. 

В англійській, із якою працює WordNet, ця характеристика проявляється ще 

більш яскраво. Адже те саме англійське слово часто може означати навіть різні 

частини мови. Наприклад, «round» може виступати як іменником, так і 

прикметником, дієсловом, прислівником і навіть прийменником. Своєю чергою, 

«round» як іменник теж має декілька значень, і т.д. 

Із іншого боку, бувають і протилежні ситуації, коли одне й те саме значення 

може бути виражене різними словами — синонімами. Крім того, одне слово може 

мати декілька альтернативних варіантів написання, скорочення тощо. Все це є 

різними способами запису того самого поняття, що не дозволяє нам ототожнити 

слово та його значення. 

Як вихід із цієї ситуації, автори WordNet прийняли рішення взяти за 

основну одиницю у своєму словнику синсет (від англ. synset ← synonym set — 

набір синонімів). Кожен синсет охоплює всі слова-синоніми, які мають тотожне 

(на думку розробників WordNet) значення. Таке групування всіх синонімів у один 

набір дозволяє розв’язати наявну багатозначність і невідповідність між 
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написанням слів і їхньою суттю. Синсет однозначно вказує саме на одне окреме 

поняття, один конкретний відтінок значення. 

Скажімо, якщо взяти англійське слово «car», то у WordNet воно посилається 

відразу на декілька різних синсетів із відповідними назвами «car.n.01», «car.n.02», 

«car.n.03» тощо. Тут «n» означає «noun» — іменник (аналогічно є позначення і 

для інших частин мови), а далі йде порядковий номер значення. При цьому кожен 

синсет означає щось своє: «автомобіль», «вагон» і т.д. 

Із іншого боку, на кожен із перелічених синсетів можуть посилатись і інші 

слова. Наприклад, до значення «car.n.01» («автомобіль») прив’язані також слова 

«auto», «automobile», «machine», «motorcar» — тобто всі, які можуть позначати те 

ж саме поняття (принаймні в одному зі своїх значень). 

Таким чином, пріоритетним для WordNet є семантичне значення, а не 

написання слів. Тож саме для синсетів будується ієрархія понять, визначаються 

відношення між ними (батьківські та дочірні поняття, синоніми, антоніми тощо). 

Витягнути всі значення слова за його написанням можна, скориставшись 

функцією synsets(): 

 
car_meanings = wn.synsets("car") 

 

Вищенаведений код збереже всі синсети, пов’язані зі словом «car», у змінну 

car_meanings. У результаті там опиниться список із декількох значень. У 

подальшому можна проводити їх опрацювання, проходячи по списку циклом чи 

беручи з нього окремі значення за індексами абощо. 

Звернувшись до окремого синсета за його повною назвою (на кшталт 

«car.n.01»), можна застосувати до нього наступні функції: 

 name() — отримати назву синсета; 

 lemma_names() — знайти назви лем (початкові форми слів) синсету; 

 definition() — показати визначення (тлумачення) синсета; 

 examples() — навести приклади вживання слова в цьому значенні. 

До прикладу, такий код: 

 
print(wn.synset("car.n.01").definition()) 

 

Має повернути пояснення, що саме означає слово «car» у першому значенні 

іменника («автомобіль»). 

Проходити по всіх синсетах окремого слова зручно через цикли, наприклад: 

 
for synset in wn.synsets("java", wn.NOUN): 
    print(synset.name() + ":", synset.definition()) 

 

Такий код видасть нам назви синсетів англійського слова «java», кожну з 

нового рядка, при цьому через двокрапку буде наведено визначення (тлумачення) 

відповідного значення. Зверніть увагу, що тут за допомогою додаткового 

опціонального аргумента wn.NOUN ми фільтруємо синсети, беручи серед усіх 
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можливих результатів лише значення іменників. Аналогічно можна зазначати й 

інші частини мови. 

За результатами виконання вищенаведеної програми ми можемо довідатися, 

що першим у словнику WordNet іде значення «острів Ява», другим — кава з цього 

острова, а третім — об’єктно-орієнтована мова програмування Java. Характерно, 

що ці синсети мають наступні назви: 

 java.n.01 

 coffee.n.01 

 java.n.03 

Звідси бачимо, що у словнику відсутня назва «java.n.02» для другого 

значення — сорту кави. Натомість цей синсет перенаправляється на перше 

значення слова «coffee». Отже, на думку розробників, кава з острова Ява не є 

достатньо важливим поняттям сама по собі. А її відмінності від будь-якої іншої 

кави не настільки суттєві, аби виділяти під це поняття окремий синсет. Через це 

вони об’єднали друге значення «java» та перше значення «coffee» в один спільний 

синсет, прив’язаний до слова «coffee», адже для нього значення «напій» є 

основним, а не другим. Тим часом усі можливі сорти кави, що позначаються 

іншими словами (за наявності), будуть скеровані до нього. 

Тим не менше, третє значення «java» має порядковий номер синсета 3, а не 

2, оскільки друге значення вже зайняте і позначає каву. Мова програмування в цій 

послідовності йде третьою, через що і називається «java.n.03». Слід пам’ятати про 

цю особливість у нумерації синсетів: деякі номери можуть бути пропущені. 

Наступний код може допомогти нам знайти синоніми або альтернативні 

варіанти написання того самого значення: 

 
for synset in wn.synsets("java"): 
    print(synset.lemma_names()) 

 

Запустивши цю програму, ми побачимо такий результат: 

 
['Java'] 
['coffee', 'java'] 
['Java'] 

 

Тут можна звернути увагу на наступні особливості. Перш за все, острів і 

мова програмування не мають синонімів чи інших варіантів написання. Натомість 

каву позначають два слова — «coffee» та «java». Крім того, залежно від значення, 

слово «java» може писатись як із малої, так і з великої літери. Проте це не впливає 

на формування синсетів. І загальні, і власні назви групуються в один список 

значень. 

Розглянемо деякі відношення між синсетами, які визначають зв’язки між 

ними. Це зокрема гіпероніми (щось більше, загальніше) та гіпоніми (щось менше, 

конкретніше). Їх можна витягнути для кожного синсета, застосувавши до нього 

функції hypernyms() і hyponyms() аналогічно до lemma_names() у прикладі 

вище. Результатом виконання кожної функції буде список синсетів. 
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Пройшовши по всіх трьох значеннях слова «java», отримаємо наступний 

результат по гіперонімах: 

 
[] 
[Synset('beverage.n.01')] 
[Synset('object-oriented_programming_language.n.01')] 

 

Отже, для мови Java більш загальним, родовим (батьківським) поняттям у 

ієрархії словника WordNet є «об’єктно-орієнтована мова програмування», а для 

кави — «напій». Справді, нині є багато мов ООП, серед яких Java є одним 

частковим випадком, тобто дочірнім поняттям. Так само є безліч напоїв, одним із 

прикладів яких є кава. Що ж до острова, оскільки Ява не є типом земної поверхні 

(на відміну від загальних слів «острів», «півострів», «материк» тощо), а просто 

одним конкретним островом, єдиним у своєму роді, то для нього гіперонімів не 

визначено взагалі. Теоретично можна було би прив’язати до слова «острів» як 

дочірні поняття назви всіх можливих островів на Землі, але у WordNet цього 

робити не стали. Натомість для слова «острів» («island») видовими поняттями є 

«бар’єрний острів» і лише кілька окремих груп островів. 

Тепер візьмемо гіпоніми по трьох значеннях слова «java»: 

 
[] 
[Synset('cafe_au_lait.n.01'), Synset('cafe_noir.n.01'), 
Synset('cafe_royale.n.01'), Synset('cappuccino.n.01'), 
Synset('coffee_substitute.n.01'), 
Synset('decaffeinated_coffee.n.01'), Synset('drip_coffee.n.01'), 
Synset('espresso.n.01'), Synset('iced_coffee.n.01'), 
Synset('instant_coffee.n.01'), Synset('irish_coffee.n.01'), 
Synset('mocha.n.03'), Synset('turkish_coffee.n.01')] 
[] 

 

Результати свідчать про те, що дочірніх (видових, конкретніших) понять до 

острова Ява та мови програмування у WordNet не визначено, тоді як для кави є 

цілий ряд підвидів. Серед них — капучіно, еспресо, мока, ірландська та турецька 

кава тощо. З такою ієрархією можна посперечатись, однак вона відображає точку 

зору авторів словника. В іншому засобі відношення між цими самими поняттями 

могли би бути інакшими. 

Загалом в ієрархії WordNet ми можемо пройти від більшості понять як униз 

до найбільш конкретних речей, так і вгору до найбільших абстракцій. На 

найвищому рівні знаходиться слово «entity» — «сутність», відносно якого всі інші 

поняття в ієрархії є видовими (прямо чи опосередковано). 

Глибина в цій ієрархії визначається кількістю рівнів, які треба пройти від 

корінного поняття «entity» донизу, аби дістатися заданого. Глибину синсета 

можна отримати через функцію min_depth() — наприклад, таким чином: 

 
tea = wn.synset("tea.n.01") 
print("tea:", tea.min_depth()) 
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Результатом для чаю («tea»), як і для кави («coffee») та інших їхніх 

сестринських понять буде число 6. Для підвидів кави глибина становить 7 і 

більше, натомість ідучи вгору, знайдемо слово «напій» («beverage») із глибиною 

5, їжу («food») зі значенням 4 і т.д. аж до слова «сутність» («entity»), яке має 

глибину 0. 

Аналізуючи глибину понять і їхні родо-видові відношення між собою, 

можна спостерегти деякі неочевидні речі. Скажімо, слово «juice» («сік») у 

WordNet не є нащадком слова «beverage» («напій»), натомість відноситься до їжі 

загалом («food»). Усі ці виявлені особливості дають розуміння про суб’єктивність 

при класифікації понять у світі та можливість різних підходів до цього питання. 

Причому це проявляється навіть у межах однієї мови (в нашому випадку 

англійської), не кажучи про інші природні мови, в кожній із яких картину світу 

може бути відображено зовсім інакше. 

Звісно, так само суб’єктивним буде і питання семантичної подібності будь-

яких двох понять між собою. Тим не менше, в рамках певної визначеної ієрархії 

на кшталт WordNet це все ж можна спробувати обчислити математично. Для 

розв’язання цієї задачі ми можемо врахувати абсолютне та відносне розташування 

понять у ієрархії. 

Є цілий ряд різних методів для визначення семантичної подібності. Проте 

більшість із них беруть до уваги ті самі два основні показники — спільний 

гіперонім для обох понять, а також глибину цих понять у ієрархічній структурі 

словника. 

Щодо спільного гіпероніма, у WordNet для його знаходження є окрема 

функція — lowest_common_hypernyms(). Наприклад, для кави та чаю це буде: 

 
coffee = wn.synset("coffee.n.01") 
tea = wn.synset("tea.n.01") 
print(coffee.lowest_common_hypernyms(tea)) 

 

Результатом буде синсет «beverage.n.01». 

Проте не обов’язково шукати гіпероніми та обчислювати глибину ієрархії 

вручну. Для знаходження семантичної подібності можна також скористатися 

готовими функціями, вбудованими у WordNet. 

Одним із найпростіших варіантів є застосування методу Path Distance 

Similarity. Його можна викликати для вищезазначених синсетів coffee та tea так: 

 
print(coffee.path_similarity(tea)) 

 

Цей код дасть нам значення 0,333, тобто 1/3. Отже, сестринські поняття (в 

яких є спільний предок рівнем вище) вважаються подібними на 33%. Провівши 

серію експериментів, можна виявити, що предок і нащадок матимуть значення 0,5 

(подібність 50%), а порівняння поняття із самим собою видасть результат 1,0 

(тобто 100% подібність). Натомість беручи більш віддалені поняття, будемо 

отримувати все менші частки одиниці: 0,25 (1/4), 0,2 (1/5) і т.д., наближаючись до 
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нуля. Таким чином обчислює близькість метод Path Distance Similarity, який дає 

результати за шкалою від 0 до 1. 

Ще одним популярним методом є Wu–Palmer Similarity, названий на честь 

його розробників — Жибяо Ву та Марти Палмер. Обчислити подібність із його 

допомогою можна наступним чином: 

 
print(coffee.wup_similarity(tea)) 

 

Якщо за Path Distance Similarity для цих синсетів ми мали всього 0,333, то 

тут уже буде 0,888. І хоча в методі Ву—Палмер використовується та сама шкала 

від 0 до 1, та до уваги береться не лише покрокова близькість між поняттями, а 

також і їхня глибина в ієрархії. Як наслідок, і результат виходить настільки 

суттєво вищим для пари «кава» і «чай». Адже ці поняття самі по собі вже є доволі 

конкретними, а не загальними. Тож вони вважаються між собою подібнішими, 

ніж інші два сестринські поняття, які є абстрактнішими та розташовані в ієрархії 

вище. Скажімо, для понять «організм» і «жива клітина», які за Path Distance 

Similarity дають так само 0,333, за методом Wu–Palmer Similarity отримаємо 

результат 0,833 через те, що вони перебувають у WordNet кількома рівнями вище. 

Наступним розглянемо метод Leacock Chodorow Similarity, який теж названо 

за прізвищами авторів — Клаудії Лікок і Мартіна Ходорова. В цьому підході так 

само враховується і відстань між поняттями, і їхня глибина, та спосіб обчислення 

кінцевого результату є відмінним. Для розрахунку значення близькості в цьому 

методі береться формула: 

 

–log(p/2d), 

 

де p — найкоротший шлях між поняттями; 

d — глибина таксономії. 

Очевидно, що при таких розрахунках шкала вже не лежатиме в межах від 0 

до 1. Як приклад, для тієї самої пари «кава» та «чай» результат складе 2,539. 

Звідси робимо висновок, що обчислення подібності можна проводити різними 

способами, проте результати за різними методами не є зіставними між собою 

через особливості розрахунків і шкал. 

Серед інших підходів до визначення близькості понять можна згадати такі 

методи, як Resnik Similarity, Jiang–Conrath Similarity, Lin Similarity тощо. Всі вони 

мають свої формули розрахунку та дають різні результати. Крім шляху між 

семантичними значеннями та глибини в ієрархії, вони використовують додаткові 

параметри. Одним із них є показник Information Content — величина, що 

обчислюється на основі використання слів у корпусі текстів, а також має вагові 

множники для різних значень. 

Методи визначення семантичної подібності є корисними для пошуку 

інформації за значенням. Це саме той інтелектуальний пошук, про який було 

згадано вище і який став доступним завдяки використанню семантичних мереж. 

Наприклад, якщо людина введе в пошуковик «транспорт», їй можуть показати не 
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лише документи, що містять саме це конкретне слово, а й також будь-які інші, в 

яких згадуються дочірні поняття: «автомобілі», «літаки», «човни» тощо. 

Крім семантичної близькості, певну цінність також становить і визначення 

подібності слів за їхнім написанням. Це використовується вже для інших задач, 

зокрема для автоматичної перевірки правопису. Одним із популярних донині 

методів тут лишається відстань редагування («edit distance»). Цей термін також 

відомий як відстань Левенштейна — за прізвищем математика, який запропонував 

такий підхід у 1965 році. Згодом інший дослідник, Фредерік Дамерау, доповнив 

цей метод, унаслідок чого з’явилась його модифікація, відома як відстань 

Дамерау—Левенштейна. 

Класична відстань редагування, або відстань власне Левенштейна, являє 

собою міру різниці двох рядків між собою. Вона обчислюється як мінімальна 

кількість операцій, необхідних для перетворення одного рядка на інший. При 

цьому допускаються такі операції, як: 

 вставка символа; 

 видалення символа; 

 заміна одного символа на інший. 

Щодо модифікації Дамерау, в його версії за одну операцію вважається 

також перестановка (зміна послідовності двох сусідніх символів). У класичній 

відстані Левенштейна для цього вимагалося би 2 операції заміни або 1 видалення 

+ 1 вставка. 

Застосування відстані редагування може бути корисним у таких сферах: 

 виправлення помилок у тексті: 

o для перевірки правопису; 

o для коригування OCR (сканованих / сфотографованих текстів); 

 порівняння послідовностей символів: 

o для версій текстів, програмного коду тощо; 

o для послідовностей ланцюжків у біології (ДНК, РНК і т.д.); 

 запобігання шахрайству (пошук фейкових торгових марок і адрес); 

 оцінювання взаємної зрозумілості подібних мов. 

Слід також зауважити, що перевірка правопису потрібна в багатьох сферах 

життя, а помилки в написанні слів можуть бути спричинені цілим рядом чинників. 

Крім очевидних проблем із технічними одруками та неграмотністю, такі помилки 

можуть бути викликані особливостями окремої мови і специфікою самих текстів. 

Зокрема є мови, в яких правила читання літер є досить простими й однозначними. 

Завдяки цьому написання слів не викликає серйозних труднощів навіть у тих, хто 

лише починає вивчати мову. Натомість у інших мовах зі складним правописом 

деякі питання є проблематичними навіть для носіїв. Тож залежно від конкретної 

мови актуальність перевірки написання слів може бути дещо вищою або нижчою. 

Крім того, незалежно від мови, особливі труднощі традиційно викликають 

власні назви та імена. Можна згадати чимало відомих людей, наприклад, у США, 

які мали походження з інших країн і відповідно слов’янські, німецькі, французькі 

та інші прізвища. З плином часу ті самі прізвища, які раніше читалися за 

правилами мов оригіналу, стали вимовлятися ближче до правил англійської. 
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Таким чином Палагнюк став «Поланіком», Ваховські — «Вачовськими», 

Маслов — «Маслоу», Хомський — «Чомскі» тощо. Тим не менше, в офіційних 

документах зберігається початкове написання імен та прізвищ, через що для них 

немає однозначної відповідності між літерами та звуками. Натомість є безліч 

варіантів, як той самий звук може бути записаний літерами. Це може викликати 

додаткові труднощі при збереженні, пошуку та опрацюванні текстових даних. 

Перейдемо до технічної реалізації обрахунку відстані редагування. Якщо 

маємо рядок X довжиною n символів і рядок Y довжиною m символів, то відстань 

редагування між ними D(n, m) можна обчислити покроково, щоразу при 

відмінностях додаючи 1 за кожну необхідну операцію, описану вище. Для крайніх 

випадків, коли один із рядків є порожнім, D(n, m) = m (якщо порожнім є X) або 

D(n, m) = n (якщо порожнім є Y). 

Розрахувавши відстань редагування для англійських слів «elephant» 

(«слон») і «relevant» («відповідний»), можемо отримати значення 3. Справді, для 

перетворення одного рядка на інший чи навпаки мінімально знадобиться три 

операції. Наприклад, видалити зі слова «relevant» першу літеру r, замінити v на p, 

а далі вставити літеру h. Така відстань для двох слів по 8 літер кожне є відносно 

невеликою. І пишуться, і читаються вони досить схоже. 

Очевидно, що якби ми порівняли цю пару слів за їхніми семантичними 

значеннями, подібність була би значно меншою, адже це різні частини мови, які 

позначають зовсім різні поняття. Тим не менше, саме близькість за написанням є 

визначальною для перевірки правопису, коли у разі орфографічної помилки чи 

випадкового одруку ми можемо знайти подібні слова для заміни неправильного. 

Станом на сьогодні відстань Левенштейна та Дамерау—Левенштейна не є 

єдиним наявним методом для визначення подібності написання слів. Серед 

альтернатив можна також згадати наступні: 

 Needleman–Wunch; 

 Smith–Waterman; 

 Monge–Elkan; 

 Jaro; 

 Jaro–Winkler. 

Якщо порівняти їхню ефективність, побачимо, що нині всі вони дають 

кращі результати за класичний метод Левенштейна. Проте його доволі часто 

використовують і досі, оскільки його перевагами є простота реалізації алгоритму 

та висока ефективність для коротких рядків. Тим не менше, значним недоліком 

цього методу є складність обчислення, що приблизно дорівнює добутку довжин 

двох рядків. Таким чином, доцільно використовувати відстань Левенштейна і 

Дамерау—Левенштейна для випадків, коли порівнювані рядки є короткими — 

наприклад, для окремих слів, а не довгих текстів. 

Розглянемо приклад практичного застосування відстані редагування для 

перевірки правопису. Поставимо задачу наступним чином: 

 користувач вводить певний текст; 

 програма має перевірити кожне слово на наявність у її словнику; 
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 якщо такого слова немає, треба підібрати зі словника N найближчих 

(найбільш подібних) слів, аби запропонувати їх на заміну. 

Перш за все, нам буде потрібен словник із еталонними словами, які система 

визначатиме як написані правильно. Далі ми будемо попарно порівнювати слово, 

введене користувачем, із усіма словами, наявними в нашому словнику. Для 

кожної пари будемо розраховувати відстань редагування. 

Якщо для якоїсь пари отримаємо значення 0, це означатиме, що введене 

слово наявне у словнику, тож ми можемо його прийняти та йти далі. Якщо ж 

відстань 0 відсутня, нам слід відсортувати отримані значення відстаней за 

зростанням. Слова, що матимуть відстань 1 від введеного користувачем, будуть 

найближчими до нього, адже вимагатимуть лише однієї операції для приведення 

некоректного (згідно зі словником) слова до еталону. Слова з відстанню 2 будуть 

менш імовірними претендентами на заміну, і т.д. Якщо ми маємо видати 

користувачам 3, 5 чи будь-яку іншу кількість пропозицій щодо потенційної заміни 

неправильного слова на правильне, обмежимо відсортований список претендентів 

саме цією кількістю. 

Можемо перевірити описаний підхід, узявши словник із 1000 найчастіше 

вживаних слів англійської мови. Це досить небагато, проте в ньому вже будуть 

міститися такі слова, як «they», «them», «their», «there» тощо. Отже, якщо 

користувач введе щось із цього списку, його слово буде знайдено. Натомість якщо 

буде введено щось на кшталт «theire», результатом підбору 5 найбільш імовірних 

варіантів на заміну буде такий список слів і їхніх відстаней редагування: 

 their (1); 

 there (1); 

 here (2); 

 these (2); 

 third (2). 

Як бачимо, чим більше ми віддаляємось від введеного слова, тим менш 

правдоподібним стає припущення про те, що людина помилилась при наборі 

тексту та насправді хотіла ввести слова з відстанню редагування 2, 3, і т.д. Тож, 

можливо, слід обмежувати пропозиції (підказки) не просто певною кількістю 

варіантів, а саме деяким значенням відстані редагування — скажімо, не більше 1 

або 2. 
 

Висновки 

У ході виконання лабораторної роботи визначено, яким чином можна 

працювати зі словником WordNet і визначати подібність слів за їхніми 

значеннями через методи обчислення семантичної близькості, а також подібність 

за написанням через відстань редагування. З’ясовано, що різні методи можуть 

давати різні результати для тієї самої пари слів. 

 

Контрольні запитання 

1. Бібліотека NLTK та її особливості. 

2. Завантаження та використання корпусів текстів при роботі з NLTK. 
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3. Semantic Web. 

4. Словник WordNet і його особливості. 

5. Види лексичних відношень між словами у WordNet. Приклади. 

6. Синсети WordNet та основні дії над ними. 

7. Гіпоніми та гіпероніми. Приклади. 

8. Що таке спільний гіперонім для 2 слів та яке його практичне застосування? 

9. Методи обчислення семантичної подібності у WordNet та їхні особливості. 

10. Відстань редагування (Левенштейна) і Дамерау — Левенштейна. Суть 

поняття. 

11. Сфери практичного застосування відстані редагування. 

12. Переваги та недоліки підходу до обчислення подібності слів через відстань 

редагування. 

13. Альтернативи до методів Левенштейна і Дамерау — Левенштейна та їхні 

особливості. 

14. Застосування відстані редагування для завдання перевірки правопису. 

 

Література 

Див. джерела №№ 1, 2, 3, 4, 5. 
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ЛАБОРАТОРНА РОБОТА 2. 

Автоматичне опрацювання текстів 

Мета: навчитися проводити автоматичну класифікацію текстів із 

використанням методів машинного навчання (зокрема наївного баєсівського 

методу), а також визначати точність отриманих результатів. 

 

Завдання 

Значення по індивідуальних варіантах наведено нижче в табл. 2. Варіант 

визначається як порядковий номер здобувача в загальному списку групи. 

Необхідні для ЛР вказівки та зразки коду наведено в лекціях. 

 

1. Створити новий консольний проєкт мовою Python (або іншою), при запуску 

вивести власне прізвище, ім’я, групу, номер ЛР. 

2. Встановити та імпортувати в проєкт бібліотеку NLTK (або аналог) і корпус 

movie_reviews, який містить позитивні та негативні відгуки на фільми. 

3. Створити список відгуків і перемішати його (наприклад, із допомогою 

бібліотеки random). 

4. Створити список, у який додати всі слова з усіх відгуків, відсортувати його за 

частотою вживання і вивести в консоль 20 найбільш уживаних у цьому 

корпусі. 

5. Знайти кількість вживань слова за індивідуальним варіантом (див. нижче). 

6. Взяти N (за інд. варіантом) найбільш уживаних слів у корпусі та створити 

функцію, яка перевіряє їх наявність у поданому текстовому файлі та повертає 

словник у вигляді: {'word1': True, 'word2': False, ...} 
7. Перевірити створену функцію, подавши на вхід файл із папки pos за інд. 

варіантом. Вивести на екран ті слова з N найуживаніших, які є в цьому файлі. 

8. Реалізувати класифікатор за наївним баєсівським методом (Naive Bayes). 

Навчити модель, узявши для тренувального набору 1800 випадкових відгуків 

із корпусу movie_reviews. 

9. Перевірити створену модель на решті відгуків із корпусу і вивести на екран 

точність класифікації. 

10. Вивести на екран 20 слів, які згідно з проведеною класифікацією найчіткіше 

вказують на приналежність відгуку до позитивних чи негативних. 

11. Помістити у звіт із ЛР повний код програм(и) та скриншоти результатів 

роботи. 

 

Табл. 2. Індивідуальні варіанти до лабораторної роботи № 2 

№ Слово N Файл 

1 young 2000 cv001_18431.txt 

2 wonderful 2100 cv002_15918.txt 

3 miracle 2200 cv003_11664.txt 

4 beautiful 2300 cv004_11636.txt 
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№ Слово N Файл 

5 magical 2400 cv005_29443.txt 

6 happy 2500 cv006_15448.txt 

7 joyful 2600 cv007_4968.txt 

8 playful 2700 cv008_29435.txt 

9 sensible 2800 cv009_29592.txt 

10 logical 2900 cv010_29198.txt 

11 responsible 3100 cv011_12166.txt 

12 practical 3200 cv012_29576.txt 

13 dependable 3300 cv013_10159.txt 

14 clinical 3400 cv014_13924.txt 

15 intellectual 3500 cv015_29439.txt 

16 cynical 3600 cv016_4659.txt 

17 deep 3700 cv017_22464.txt 

18 simple 3800 cv018_20137.txt 

19 absurd 3900 cv019_14482.txt 

20 radical 4000 cv020_8825.txt 

21 liberal 4100 cv021_15838.txt 

22 fanatical 4200 cv022_12864.txt 

23 criminal 4300 cv023_12672.txt 

24 acceptable 4400 cv024_6778.txt 

25 respectable 4500 cv025_3108.txt 

26 digital 4600 cv026_29325.txt 

27 unbelievable 4700 cv027_25219.txt 

28 bloody 4800 cv028_26746.txt 

29 marvelous 4900 cv029_18643.txt 

30 super 5000 cv030_21593.txt 

 

Теоретичні відомості 

Класифікація тексту — це пошук шаблонів у текстових даних для розбиття 

окремих текстів, речень, слів тощо на певні категорії. До задач автоматичної 

класифікації належать зокрема наступні: 

 визначення роду слова; 

 розмітка слів за частинами мови (PoS-tagging); 

 класифікація текстів за змістом: 

o поділ на теми; 

o визначення спаму; 

 сентимент-аналіз; 

 (інші). 

Сентимент-аналіз, або аналіз тональності тексту, полягає у маркуванні 

текстів залежно від їхньої емоційної забарвленості. Найпростішим випадком є 

поділ на дві категорії — позитивні та негативні. При більш докладному аналізі 

можна також виділити нейтральні тексти, а для позитивних і негативних провести 
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градацію за певною шкалою (наприклад, +2, +1, 0, –1, –2 або 1, 2, ..., 10). Одним із 

застосувань автоматичної класифікації такого роду є оцінювання відгуків на 

товари, послуги та інше. 

В основі сентимент-аналізу зазвичай лежать методи штучного інтелекту, 

зокрема машинного навчання. Спершу створюється тренувальний набір, у якому 

кожен текст промарковано відповідними позначками (наприклад, позитивний чи 

негативний). Цей набір передається моделі машинного навчання для тренування. 

При цьому модель із допомогою штучного інтелекту самостійно визначає певні 

закономірності в текстах, які дозволяють віднести їх до тієї чи іншої категорії. 

На другому етапі береться тестовий набір, для якого теж відомі позначки, 

однак цей набір передається моделі на аналіз уже без них. Модель намагається 

промаркувати кожен текст самостійно, визначаючи відповідний клас на основі 

попереднього навчання. Зіставивши отримані висновки моделі з реальними 

позначками, можна охарактеризувати точність моделі. 

Розглянемо наступну задачу. Дано тренувальний набір, що містить 2000 

відгуків англійською мовою на різні фільми. Набір є збалансованим і містить по 

1000 позитивних і негативних відгуків. Використовуючи ці дані та певну модель 

машинного навчання, слід навчити її визначати тональність відгуку лише за його 

текстом. Після перевірки на тестовому наборі треба визначити точність наявних 

результатів. 

Варіантом розв’язання цієї задачі є наступний алгоритм. Спершу зберемо 

всі слова з усіх наявних відгуків. Потім знайдемо найбільш частотні слова, тобто 

ті, які зустрічаються в цьому корпусі текстів найчастіше. Для кожного слова, 

починаючи з найчастотніших, визначимо, в якій категорії відгуків (позитивні чи 

негативні) воно зустрічається частіше і наскільки. Надалі при аналізі нових 

текстів без маркувань будемо рахувати, слів із якої категорії в ньому міститься 

більше. 

В наступному прикладі коду імпортується корпус текстів movie_reviews, 

який містить вищезгадані відгуки, розподілені по папках pos і neg. Також тут 

імпортується модуль random, який дозволяє перемішувати тексти випадковим 

чином для формування тренувальних і тестових наборів даних. 

 
from nltk.corpus import movie_reviews 
import random 

 

Сформуємо список усіх наявних слів у нижньому регістрі (аби на аналіз не 

впливала позиція слова на початку чи в середині / кінці речення). Слова 

сортуються за спаданням частотності через функцію FreqDist(). На екран 

виводяться 15 найбільш уживаних слів у заданому корпусі відгуків: 
 
all_words = [] 
for w in movie_reviews.words(): 
    all_words.append(w.lower()) 
all_words = nltk.FreqDist(all_words) 
print(all_words.most_common(15)) 
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У результаті можемо отримати приблизно такий список: 

 
[(',', 77717), ('the', 76529), ('.', 65876), ('a', 38106), ('and', 
35576), ('of', 34123), ('to', 31937), ("'", 30585), ('is', 25195), 
('in', 21822), ('s', 18513), ('"', 17612), ('it', 16107), ('that', 
15924), ('-', 15595)] 

 

Як бачимо, до списку ввійшли не лише повноцінні слова, а й короткі форми 

на кшталт «’s», а також розділові знаки. Це відбувається через те, що функція 

words() не просто шукає в тексті слова, а розбиває його на складові за пробілами. 

Таке розбиття називається токенізацією, і за бажання можна в подальшому 

відфільтрувати отриманий результат, видаливши зайві елементи списку (токени). 

Між іншим, тут можна зауважити ще одну особливість, яка стосується саме 

Python. У консоль майже всі токени виведено в одинарних лапках, однак самий 

знак «’» виділено подвійними. 

Список all_words, утворений вище, можна використати для перевірки 

кількості вживань певного слова в цілому наборі текстів. Для прикладу 

довідаємося, скільки разів у відгуках зустрічаються слова «stupid» і «excellent»: 

 
print(all_words["stupid"]) 
print(all_words["excellent"]) 

 

Після виконання програми побачимо, що перше слово вживається 253 рази, 

а друге — 184. Можна висувати різні версії, чому так сталось. Однією з версій 

може бути те, що негативна реакція на фільм (яка випливає з ужитої лексики) 

частіше викликає бажання лишити відгук, ніж позитивна. Втім, аби підтвердити 

чи спростувати таку гіпотезу, слід узяти весь обсяг відгуків на певному ресурсі 

(скажімо, IMDB, звідки і було наповнено корпус movie_reviews у NLTK) та 

порівняти реальну кількість позитивних і негативних. 

Іншою та більш імовірною версією є те, що саме по собі слово «stupid» 

загалом є більш уживаним у англійській мові, ніж «excellent». Аби перевірити це, 

можна скористатися певним частотним словником. Що ж до роботи з нашим 

корпусом, тут можна спробувати пошукати інші позитивно забарвлені слова. 

Зробивши це, виявимо, що «good» зустрічається в цьому наборі відгуків 2411 

разів, «great» — 1148, а «nice» — 344, що є вищими показниками, ніж у слова 

«stupid». Отже, скоріш за все, слово «excellent» просто не належить до найчастіше 

вживаної лексики в англійській. 

Тепер перейдемо до роботи з машинним навчанням. Передусім сформуємо 

список файлів із відгуками, розбитих за категоріями (позитивні та негативні) та 

перемішаємо його випадковим чином: 

 
doc = [(list(movie_reviews.words(fileid)), category) 
      for category in movie_reviews.categories() 
      for fileid in movie_reviews.fileids(category)] 
random.shuffle(doc) 
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Потім створимо список word_features, що міститиме перші 3000 найбільш 

частотних елементів із all_words. А також оголосимо функцію find_features() 

наступного змісту: 

 
word_features = list(all_words.keys())[:3000] 
def find_features(d): 
  words = set(d) 
  features = {} 
  for w in word_features: 
    features[w] = (w in words) 
  return features 

 

Ця функція братиме на вхід слова з певного тексту (наприклад, файлу з 

окремим відгуком) і формуватиме з них множину (без повторів). Далі 

створюється словник features, який наповнюється ключами — всіма 3000 словами 

з word_features, та відповідними їм значеннями — наявністю чи відсутністю 

кожного з цих слів у поданому на вхід наборі слів (із відгуку абощо). На вихід ця 

функція повертає утворений і наповнений словник features. 

Можемо потестувати роботу створеної функції так: 

 
print(find_features(movie_reviews.words("neg/cv000_29416.txt"))) 

 

Цей код візьме файл cv000_29416.txt із папки neg (негативні відгуки) і 

перевірить, які з 3000 найчастотніших слів у ньому містяться, а які — ні. При 

цьому на екран буде виведено всі 3000 слів із мітками «True» або «False». Тож на 

майбутнє було б добре вдосконалити цей код і відображати лише ті слова, які 

зустрілись, нехтуючи мітками «False», яких зазвичай буде переважна більшість. 

Далі перейдемо до машинного навчання. Спершу треба розбити наявні в нас 

2000 відгуків на тренувальний і тестовий набори. Для тренувального візьмемо 

перші 1900 відгуків, для тестового залишимо решту 100. Варто пам’ятати, що на 

початку програми ми перемішали відгуки через функцію random.shuffle(). Тож 

при кожному наступному запуску коду конкретний вміст тренувального та 

тестового наборів буде іншим. 

 
featuresets = [(find_features(rev), category) 
   for (rev, category) in doc] 
training_set = featuresets[:1900] 
testing_set = featuresets[1900:] 

 

Безпосередньо машинне навчання можна проводити з використанням різних 

методів. Одним із найпростіших і поширених класичних методів є наївний Баєсів 

алгоритм, що ґрунтується на теоремі Баєса. Наївним його називають через те, що 

для спрощення задачі він припускає, що всі риси, наявні у вибірці, є незалежними 

між собою. Таким чином, при визначенні приналежності об’єкта до певного класу 

наявність кожної риси рахується окремо. 
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Подібне спрощення впливає на точність результатів: у середньому наївний 

Баєсів алгоритм дає точність від 60% до 90%, і вийти за ці межі досить важко. 

Однак за рахунок нехтування взаємозалежностями цей алгоритм є простим для 

побудови та легко масштабується. Тож його можна використовувати для простих 

задач, де не вимагається особлива точність. 

Наївний Баєсів алгоритм є вбудованим у NLTK. Викликати його та навчити 

модель на нашому тестовому наборі з його допомогою можна наступним чином: 

 
classifier = nltk.NaiveBayesClassifier.train(training_set) 
 

Після навчання проведемо перевірку моделі на тестовому наборі та 

виведемо на екран точність отриманих результатів у відсотках: 
 
print("Naive Bayes Algorithm accuracy percent:", 
(nltk.classify.accuracy(classifier, testing_set))*100) 
 

Результат може бути, наприклад, таким: 

 
Naive Bayes Algorithm accuracy percent: 75.0 

 

Враховуючи вищеописані особливості алгоритму, якщо ми отримали 75%, 

це можна вважати досить непоганим результатом. Також пам’ятайте, що оскільки 

відгуки щоразу перемішуються і вміст тренувального та тестового набору є 

різним, так само різним буде і значення точності. Скласти більш об’єктивне 

враження про точність цього (чи іншого) алгоритму можна, провівши серію 

експериментів та обчисливши середнє арифметичне отриманих значень. 

До слова, для класифікації можна скористатися й іншими алгоритмами 

машинного навчання. Порівнявши їхню точність із наївним Баєсовим алгоритмом, 

можна виявити, що деякі з них дають кращі результати. Зокрема в NLTK є модулі 

з іншими класифікаторами. 

Крім того, є цілий ряд інших бібліотек для Python, які можна підключити до 

проєкту. Наприклад, у Scikit-learn доступні такі алгоритми, як MultinomialNB, 

GaussianNB та BernoulliNB — вдосконалені модифікації наївного Баєса (NB). 

Серед інших поширених методів — SVC, LinearSVC, NuSVC, SGDClassifier, 

LogisticRegression тощо. 

Іще один зручний інструмент — функція show_most_informative_features(). 

Вона дозволяє побачити саме ті риси в наборі, які є найбільш виразними і 

найбільш чітко показують приналежність кожного об’єкта до того чи іншого 

класу. В нашому випадку з відгуками це слова, які значно частіше зустрічаються у 

позитивних, ніж у негативних, і навпаки. 

Викличемо цю функцію, аби побачити 6 найбільш інформативних слів: 

 
classifier.show_most_informative_features(6) 

 

Результат може бути наступним: 
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Most Informative Features 
  astounding = True pos : neg  =  11.7 : 1.0 
  incoherent = True neg : pos  =   9.6 : 1.0 
    predator = True neg : pos  =   8.3 : 1.0 
     wasting = True neg : pos  =   8.3 : 1.0 
breathtaking = True pos : neg  =   7.5 : 1.0 
   balancing = True pos : neg  =   7.0 : 1.0 

 

Як бачимо, співвідношення pos : neg для найбільш інформативного слова 

«astounding» («вражаючий», «приголомшливий») становить 11,7 до 1. Це означає, 

що воно зустрілось у позитивних відгуках у 11,7 разів частіше, ніж у негативних. 

Цього можна було очікувати, враховуючи позитивне забарвлення самого слова. 

В той же час, необхідно звернути увагу на те, що серед інформативних слів 

є також і ті, що зустрілись у негативних відгуках частіше. Скажімо, «incoherent» 

має співвідношення neg : pos зі значенням 9,6. Слід розуміти, що інформативність 

є абстрактною характеристикою, яка показує виразність загалом — незалежно від 

того, до якого саме класу віднесено той чи інший об’єкт. 
 

Висновки 

У ході виконання роботи визначено, як можна проводити автоматичну 

класифікацію текстів із використанням методів машинного навчання (зокрема 

наївного Баєсового) та визначати точність отриманих результатів. З’ясовано, що 

точність залежить від обраного методу, тренувального і тестового наборів даних. 
 

Контрольні запитання 

1. Функція entailments() при роботі з WordNet. 

2. Пошук логічних зв’язків у тексті (recognizing text entailments) через NLTK. 

3. Реферування тексту. 

4. Анотування тексту. 

5. Різниця між анотуванням і реферуванням тексту. 

6. Суть завдання класифікації тексту. Приклади застосування. 

7. Сентимент-аналіз (аналіз тональності) тексту. Приклади. 

8. Підхід (кроки) до розв’язання задачі класифікації відгуків на фільми. 

9. Особливості реалізації класифікації тексту в NLTK. 

10. Наївний Баєсів алгоритм. Суть підходу. 

11. Методи-альтернативи наївного баєсівського алгоритму. 

12. Точність класифікації тексту (що відображає, в яких межах лежить тощо). 

13. Серіалізація та десеріалізація в Python (pickling та unpickling). 

14. Суть поняття «машинне навчання». Тренувальні та тестові набори даних. 

15. Пошук кількості входжень слова у текстовому файлі. Приклад реалізації. 

16. Пошук N найуживаніших слів при аналізі текстових файлів. 

17. Задача множинної класифікації текстів та підходи до її розв’язання. 
 

Література 

Див. джерела №№ 1, 2, 3, 4. 
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ЛАБОРАТОРНА РОБОТА 3. 

Автоматичне збирання текстів 

Мета: навчитися працювати з API та вебскраперами, збирати та зберігати 

тексти з відкритих джерел із допомогою відповідних API та бібліотек. 

 

Завдання 

Значення по індивідуальних варіантах наведено нижче в табл. 3. Варіант 

визначається як порядковий номер здобувача в загальному списку групи. 

Необхідні для ЛР вказівки та зразки коду наведено в лекціях. 

 

1. Створити новий консольний проєкт (мовою Python або іншою довільною), при 

запуску вивести власне прізвище, ім’я, групу, номер ЛР. 

2. Імпортувати до проєкту бібліотеку Instaloader, Instagrapi або іншу аналогічну 

та інші необхідні модулі за зразками з лекцій. Під’єднатись до профіля в 

Instagram за інд. варіантом (див. табл. 3) та вивести в консоль загальну 

інформацію про нього: 

 ID сторінки; 

 опис (bio); 

 чи є профіль приватним (так/ні); 

 кількість опублікованих постів. 

3. Завантажити та записати в один текстовий файл тексти (captions) із 10 

останніх опублікованих у цьому ж профілі постів разом із датами та часом 

публікації. 

4. Скачати з цього ж профіля повністю (медіа та тексти файлами) всі пости, 

опубліковані за останні 14 днів. 

5. Імпортувати бібліотеку meteostat (або іншу аналогічну). Під’єднатись до сайту 

Meteostat засобами бібліотеки та зчитати значення показника (за варіантом) в 

місті Рейк’явік (Ісландія) по днях протягом одного місяця (за варіантом). 

Вивести на екран ці дані у вигляді графіка. 

6. Зареєструвати акаунт і отримати ключ API на сайті ENTSO-E. Імпортувати 

довільні бібліотеки для приєднання до цього сайту, створити запит для 

отримання даних щодо передачі електроенергії між двома країнами (за інд. 

варіантом із табл. 3) по днях за той же місяць, що і в попередньому пункті. 

Вивести на екран ці дані у вигляді графіка. 

7. Зареєструвати акаунт і отримати ключ API на сайті Last.fm. Імпортувати 

довільні бібліотеки для приєднання до цього сайту, створити запит для 

отримання даних за інд. варіантом із табл. 3 (наприклад: показати топ 

виконавців, подібних на заданий гурт) і відобразити результат у консолі. 

8. Імпортувати до проєкту бібліотеку Beautiful Soup 4 (або іншу для парсингу, 

скрапінгу вебсторінок). Помістити в папку проєкту довільну HTML-сторінку, 

яка містить звичайний текст, а також принаймні одну таблицю із заголовками 

та вмістом. Під’єднатись до сторінки засобами бібліотеки та зчитати весь 

вміст (код) сторінки в нову змінну. Вивести цю змінну в консоль. 
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9. Зчитати вміст усіх комірок таблиці на сторінці в новий список. При цьому 

зчитувати лише текст, ігноруючи можливі вкладені теги (наприклад, 

форматування шрифту) та спецсимволи (нерозривні пробіли, знаки 

перенесення рядків, табуляції тощо). Вивести отриманий список у консоль. 

10. Довільним чином відфільтрувати отриманий список, лишивши в ньому тільки 

вміст основних комірок (без заголовків). Вивести в консоль очищений список. 

11. Помістити у звіт із ЛР код програм(и) за винятком особистих даних (тобто без 

API ID, API hash, телефону) та скриншоти результатів роботи, а також 

долучити отриманий текстовий файл. 

 

Табл. 3. Індивідуальні варіанти до лабораторної роботи № 3 

№ Instagram Місяць Meteostat ENTSO-E* Last.fm 

1 nuftinfo 01.2024 опади UA→PL к-ть слухачів Radiohead 

2 acs_nuft 02.2024 шв. вітру UA→SK подібні виконавці Muse 

3 mon.ua.official 03.2024 сер. темп. UA→HU топ 5 альбомів Depeche Mode 

4 mintsyfra.official 04.2024 макс. темп. UA→MD топ 5 треків Interpol 

5 diia.gov.ua 05.2024 мін. темп. UA→RO топ 5 тегів Kent 

6 ukrposhta 06.2024 тиск PL→UA біографія (опис) Keane 

7 mfa_ukraine 07.2024 шв. вітру SK→UA к-ть слухачів Myslovitz 

8 kyivcityofficial 08.2024 опади HU→UA подібні виконавці Calexico 

9 euam_ukraine 09.2024 шв. вітру MD→UA топ 6 треків Yann Tiersen 

10 knyharnia_ye 10.2024 сер. темп. RO→UA топ 6 альбомів Coldplay 

11 euinua 11.2024 макс. темп. PL→SK топ 6 тегів Kasabian 

12 ukrainianrailways 12.2024 мін. темп. SK→PL біографія (опис) Porcupine Tree 

13 kyivpastrans 01.2025 тиск PL→CZ к-ть слухачів Arcade Fire 

14 air.force.ua.official 02.2025 сер. темп CZ→PL подібні виконавці Travis 

15 eurovision 03.2025 опади CZ→SK топ 7 альбомів a-ha 

16 mincultukraine 04.2025 шв. вітру SK→CZ топ 7 треків Arctic Monkeys 

17 terytoriyaa 05.2025 сер. темп. CZ→HU топ 7 тегів Ulrich Schnauss 

18 uinp.gov.ua 06.2025 макс. темп. HU→CZ біографія (опис) Blackfield 

19 ministry_of_defense_ua 07.2025 мін. темп. SK→HU топ 3 альбоми Diorama 

20 moz_ukraine 08.2025 тиск HU→SK подібні виконавці Psilodump 

21 nato 09.2025 макс. темп. RO→HU к-ть слухачів Luomuhappo 

22 europeancommission 10.2025 опади HU→RO топ 8 треків First Aid Kit 

23 unit.city 11.2025 шв. вітру RO→MD топ 8 тегів The Cardigans 

24 epam_ukraine 12.2025 сер. темп. MD→RO біографія (опис) Garbage 

 

*Примітка: UA = Україна, PL = Польща, SK = Словаччина, HU = Угорщина, 

MD = Молдова, RO = Румунія, CZ = Чехія. 

 

Теоретичні відомості 

Автоматичне збирання текстів використовується для різних цілей. Це пошук 

інформації в інтернеті за певним запитом; створення корпусів текстів окремих 

авторів чи організацій або збірок за деякою тематикою; наповнення тренувальних 

наборів для машинного навчання з метою подальшої генерації текстів; збирання 

та структурування статистичних даних (метеоумови, курси валют, торгівля тощо) 

із текстів для подальшої візуалізації, інтелектуального аналізу даних і т.д. 
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Останнім часом серед інших актуальними є також проєкти, в яких із 

допомогою методів комп'ютерної лінгвістики робляться спроби автоматичного 

визначення та маркування мови ворожнечі та токсичних текстів (наприклад, у 

соцмережах), а також ідентифікації авторства анонімних текстів завдяки 

стилеметрії та аналізу характерних рис тексту. 

Крім того, збирання текстів із відкритих джерел активно використовується в 

OSINT-аналітиці (open-source intelligence). Можна не лише збирати дані самі по 

собі, а й проводити дослідження для пошуку першоджерела новини чи іншого 

тексту. Це можливо зробити за рахунок аналізу часу та вмісту публікацій, 

відстежуючи місця витоків даних, ланцюжки поширення дезінформації тощо. 

Із технічного боку збирання текстів із вебджерел можливе різними 

шляхами. Нині одними з поширених підходів є робота з API та вебскрапінг. 

API (від англ. Application Programming Interface) — інтерфейс, тобто 

сполучна ланка, для зв’язку програм між собою. Зазвичай цими програмами є 

клієнтський додаток і певний сервіс, розміщений на вебсервері. Серед відомих 

API слід назвати інтерфейси, створені популярними соцмережами, месенджерами, 

сайтами різного профілю: Google, Facebook, Instagram, Twitter (X), Last.fm, 

OpenWeather, ENTSO-E тощо. 

Як один із прикладів роботи з текстовими та іншими даними розглянемо 

соціальну мережу Instagram, яка є однією з найпопулярніших у світі та зокрема і в 

Україні. Ця система розроблялась іще з 2010 року, і нині належить компанії Meta 

(США). Станом на кінець 2025, цей засіб мав близько 3 млрд. активних 

користувачів у світі щомісяця, з яких біля 500 млн. — щодня. 

Серед особливостей Instagram: 

 хмарне зберігання даних (що є нині стандартом для сучасних 

великих сервісів); 

 кросплатформність (ним можна користуватись як через офіційний 

мобільний додаток під Android та iOS, так і настільний додаток для 

Windows 10+, а також вебверсію, що працює через браузер майже з 

будь-якого пристрою); 

 інтерфейс понад 30 мовами світу; 

 можливість автоматичного та безкоштовного перекладу текстів 

публікацій (що також сприяє популярності засобу в різних точках 

світу); 

 можливість публікувати фото, відео, тексти, лишати коментарі, 

поширювати публікації інших, а також спілкуватись і ділитись 

медіафайлами у вбудованому месенджері; 

 закритий код, однак наявні часткові аналоги з відкритим кодом, у 

яких обмін даними реалізовано з допомогою API. 

Що стосується сторінок, або профілів, вони в Instagram є двох типів: 

 публічні (доступні до перегляду для всіх без підписки на профіль і 

навіть без акаунту та/або авторизації в мережі); 

 приватні (вимагають підписки та схвалення заявки власником). 
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Як інформацію з публічних сторінок, так і з приватних (за умови підписки) 

можна збирати шляхом створення власних додатків, які будуть отримувати 

доступ до Instagram API. Для цього можна або зареєструватись і отримати 

параметри доступу на офіційній сторінці для розробників, або скористатися 

бібліотеками для певної мови програмування, яких нині досить багато. Після 

цього можна буде працювати як із власним обліковим записом у соцмережі 

(профілем, підписками, особистими повідомленнями, збереженими постами 

тощо), так і з інформацією з інших сторінок, до перегляду яких ми маємо доступ. 

Серед можливостей взаємодії з Instagram слід виділити наступні: 

 отримання загальної інформації про профіль (опис тощо); 

 отримання доступу до постів (кількість, посилання на них і т.д.) 

 скачування публікацій (файли зображень, відео, текстів підписів у 

форматі .txt і метаданих постів у форматі JSON). 

Із докладною інформацією про версії Instagram API та їхні можливості 

можна ознайомитись на офіційному ресурсі для розробників за посиланням: 

https://developers.facebook.com/products/instagram/apis. 

Саме завдяки офіційному API за останні роки було розроблено безліч 

сторонніх засобів, що дозволяють працювати з соцмережею поза офіційними 

додатками та вебверсією. Це різноманітні консольні програми, мобільні додатки 

та розширення для браузерів, у яких функції Instagram або розширені (додано 

можливість скачувати публікації та історії, запланувати та автоматизувати власні 

пости, аналізувати статистику взаємодії тощо), або ж частково урізані 

(відфільтровано стрічку новин; усунуто рекламу; прибрано деякі функції заради 

економії пам’яті і т.д.). 

Щодо роботи з API через сучасні мови програмування, то для цього теж уже 

створено багато зручних інструментів. Це спеціальні бібліотеки та модулі для 

Python, C# та інших мов. Зокрема для Python популярною бібліотекою є 

Instaloader, що розробляється з 2016 року. Станом на листопад 2025 року 

найновішою версією цього модуля є 4.15. Поширеною та зручною альтернативою 

нині є також Instagrapi, перші версії якої почали виходити в 2020 році. 

Слід зазначити, що залежно від сервісу, доступ до якого ми хочемо 

отримати через API, процес налаштування та підготовки до роботи може бути 

простішим або складнішим, причому досить суттєво. 

Якщо взяти за зразок соцмережу X [Twitter], то це один із прикладів 

складної реалізації. По-перше, тут обов’язково потрібна реєстрація та створення 

облікового запису. По-друге, при цьому треба не лише відповісти на довгий 

список запитань, а й підтвердити свою адресу електронної пошти та навіть 

телефонний номер. Більш того, якщо ви плануєте передавати вміст скачаних 

постів або похідну інформацію будь-якій державній установі або організації, 

пов’язаній із нею (наприклад, якщо ви розробляєте додаток для ДСНС чи іншої 

служби), вам доведеться не один тиждень листуватися з адміністрацією щодо 

призначення й особливостей вашого додатку, адже ця соцмережа дуже неохоче 

ділиться своїми даними. Крім цього, станом на кінець 2025 р. функції скачування 

текстів та іншого були доступні лише у платних підписках, тоді як безкоштовна 

надавала змогу лише автоматизувати публікацію власних постів. 



 33 

Що стосується інших соцмереж, месенджерів і сайтів зі статистичною 

інформацією, часто процедура реєстрації теж обов’язкова, проте вона є значно 

простішою. Наприклад, вимагається лише заповнити коротку форму розробника з 

декількома запитаннями (назва й тип додатку, сфера використання, іноді також 

короткий опис та галочка згоди з умовами надання послуг). Після цього перевірка 

даних проходить автоматично, і на електронну пошту або миттєво, або протягом 

пари годин приходить лист із параметрами доступу до API (це може бути Id та 

пароль, хеш або токен). Іноді доводиться зачекати від кількох хвилин до однієї 

доби для активації доступу, але зазвичай усе працює відразу після реєстрації. 

Також більшість API є безкоштовними, хоча тут є чимало винятків, 

особливо коли вам необхідно викачувати значні обсяги даних або робити велику 

кількість запитів на секунду, хвилину, годину, добу і т.д. Це передусім стосується 

випадків, коли створювані вами додатки будуть витягувати дані з певного сервісу 

не лише для вас у рамках особистого використання, а для багатьох кінцевих 

користувачів. Скажімо, обмеження в 60 запитів на хвилину (з безкоштовної 

підписки сайту OpenWeather), яких цілком достатньо при експериментах із API 

для навчання чи особистих цілей, можуть стати вже суттєвою перешкодою для 

безперебійної роботи мобільного додатку, розрахованого на щоденний показ 

погодних умов для десятків тисяч людей. 

Повертаючись до соцмережі Instagram і бібліотек Instaloader, Instagrapi та 

інших аналогів, це навпаки, один із найпростіших шляхів отримання даних через 

API. Адже ним можливо скористатись не лише без реєстрації акаунту розробника, 

а й узагалі без облікового запису в самій соцмережі, тобто анонімно. 

Тим не менше, до спроб встановлення з’єднання та роботи з даними, варто 

наголосити на системі безпеки Instagram та інших популярних вебсервісів. Досить 

часто це викликає труднощі, із якими можуть стикнутися розробники через 

недотримання певних базових правил роботи. Річ у тому, що задля безпеки самих 

користувачів і серверів будь-яка підозріла активність як людей, так і додатків, що 

працюють через API, призводить до блокування облікового запису, з якого вона 

була зафіксована. Зокрема Вам можуть обмежити доступ до акаунту від кількох 

хвилин і до декількох діб у випадку т. зв. переповнення (FloodWaitError). 

Таке може статися, серед іншого, при багатократній невдалій авторизації 

(неправильно введено пароль, код логіну тощо) або при зміні параметрів сесії. Під 

зміною параметрів розуміється як зміна IP-адреси, з якої відбувається вхід, так і 

зміна пристрою, що може відстежуватись через MAC-адресу. Тож очевидно, що 

якщо заходити одночасно чи з невеликим інтервалом із різних пристроїв 

(телефон, планшет, ноутбук, настільний комп’ютер) або адрес (через кабельний 

інтернет, Wi-Fi, інтернет від мобільного оператора, а також із використанням VPN 

та без), це може трактуватись як підозріла активність і розцінюватись як спроба 

зламу вашого облікового запису зловмисниками. Отже, при тестуванні додатків 

слід пам’ятати про можливі обмеження, уважно вводити свої дані доступу, а 

також не забувати підтверджувати свою активність із інших пристроїв у разі 

запитів через офіційний додаток Instagram. 

Розглянемо приклад простого запиту до публічного профіля в мережі з 

використанням мови Python і бібліотеки Instaloader: 
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import instaloader 
 
loader = instaloader.Instaloader() 
user = "..." # username 
 
profile = instaloader.Profile.from_username 
(loader.context, user) 
print("Username:", profile.username) 
print("User ID:", profile.userid) 
print("Bio:", profile.biography) 
print("Media count:", profile.mediacount) 
print("Private profile:", profile.is_private) 
 

У цьому фрагменті ми імпортуємо бібліотеку, створюємо клієнта loader для 

завантаження даних, обираємо профіль user, який нас цікавить, і отримуємо 

посилання безпосередньо на сторінку цього користувача у змінній profile. Після 

цього можна звертатись до змінної, вичитуючи з неї потрібні нам атрибути. 

Тут слід сказати, що кожен профіль у Instagram має набір властивостей: 

 номер (userid); 

 нікнейм (username), видимий як назва та адреса сторінки; 

 опис (biography); 

 режим доступу (is_private); 

 кількість постів (mediacount); 

 посилання на фото; 

 підписники (followers); 

 підписки (followees); 

 та інше. 

Вищенавадений код вичитає 5 зазначених властивостей зі сторінки за 

назвою, збереженою у змінній user, і покаже їх у консолі. Підписники та підписки 

доступні лише після авторизації в мережі, а при подібному анонімному запиті 

доступ до цієї інформації буде обмежено. 

Наступним кроком спробуємо отримати доступ до постів — що також 

можливо анонімно, поки ми працюємо з публічними профілями. Наприклад: 
 
print("Posts:\n") 
posts = profile.get_posts() 
for post in posts: 
 print("Date:", post.date_utc) 
 print("Caption:", post.caption) 
 print("Media count:", post.mediacount) 
 print() 
 

Цей код спершу отримує посилання на всі пости сторінки у змінну posts, а 

далі проходить по них циклом for і для кожного пише в консолі дату публікації, 

текст (властивість caption) і кількість медіафайлів у цьому пості. Між постами 

продруковується один порожній рядок як розділювач для зручності читання. 
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Важливо зазначити: якщо читати публікації таким чином, то при отриманні 

даних не проводиться жодна фільтрація постів. Тож навіть коли певна сторінка 

має тисячу чи більше опублікованих записів, цикл for пройде по них усіх без 

винятку. Це не завжди добре, адже: 

 зазвичай це зайві дані, які нам не потрібні; 

 це може займати деякий час і витрачати наш трафік; 

 при перевищенні певних лімітів даних нас можуть заблокувати. 

Конкретно з методом get_posts() це не так критично, як із деякими іншими, 

адже він лише отримує перелік постів і метаданих, не скачуючи їх. Тим не менше, 

було б корисно мати змогу обмежити кількість скачаних постів довільним чином. 

Однак незручність полягає в тому, що звичайне звернення до окремих 

елементів за індексом через [n] і розрізання (англ. slicing) через [m:n], яке 

доступне в Python для структур даних на кшталт списків, тут не працює. Річ у 

тому, що отриманий перелік постів є не списком, а об’єктом типу NodeIterator, 

елементи якого можна проходити лише покроково від першого до останнього по 

одному за раз. Тож звернення за індексом призводить до помилки типів даних. 

Розв’язати цю проблему можна за рахунок використання допоміжних 

засобів із бібліотеки islice. Розглянемо три шляхи виходу з ситуації: 
 
from itertools import islice 
 
limit = 3 
 
for post in islice(posts, 0, limit): 
 print(post.date_utc) 
 print(post.caption) 
# АБО: 
for index, post in zip(range(limit), posts): 
 print("Post no.", index+1) 
 print(post.date_utc) 
 print(post.caption) 
# АБО: 
for index, post in enumerate(islice(posts, limit)): 
 print("Post no.", index+1) 
 print(post.date_utc) 
 print(post.caption) 
 

Другий і третій варіанти дозволяють не лише обмежити числом limit 

кількість постів, по якій ми проходимо, а й за потреби пронумерувати їх. 

Як бачимо, навіть без скачування самих постів ми маємо доступ до їхніх 

текстів, дат і часу публікації. Зберігши потрібну нам кількість повідомлень у 

рядкову змінну, текстовий файл чи будь-куди інде, надалі можна опрацьовувати 

отримані тексти довільним чином, наприклад, витягуючи з них потрібну числову 

чи іншу інформацію, проводячи інтелектуальний аналіз даних тощо. 

Важливо, що при збиранні текстової інформації з API, зокрема при роботі з 

месенджерами, далеко не всі повідомлення в діалогах, групах і на каналах будуть 

містити текст. Наприклад, для деяких повідомлень властивість .message (або 
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аналогічна залежно від джерела та API) може являти собою порожній рядок — 

наприклад, якщо в діалозі чи на каналі було розміщено лише картинку, відео чи 

інший файл без жодних підписів. Що гірше, деякі повідомлення та пости взагалі 

не містять властивості .message як такої (при витягуванні даних її значення буде 

null, None тощо), адже деякі повідомлення є службовими: канал створено, 

перейменовано, змінено зображення профіля, додано чи видалено учасників і т.д. 

У таких випадках намагання зчитати чи скопіювати вміст .message призведе до 

помилки. Тож при завантаженні слід перевіряти наявність цієї властивості та в 

разі її відсутності пропускати подібні повідомлення. 

Що ж до завантажування медіафайлів через бібліотеку Instaloader, тут нам 

доступні такі варіанти. По-перше, можна скачати лише зображення профілю та 

метадані (опис сторінки) у форматі JSON таким чином: 
 
loader.download_profile(user, profile_pic_only=True) 
 

При цьому, якщо задати значення другого параметра рівним «False», то така 

функція скачає відразу всі пости без жодних обмежень, аналогічно до get_posts(). 

Але й тут так само є змога відфільтрувати завантажувані дані. Це навіть простіше, 

адже функція download_profile() має ще один вбудований опціональний параметр 

post_filter. Сюди можна прописати обмеження на пости, наприклад, за датою їх 

публікації: 
 
import datetime 
 
loader.filename_pattern = "{owner_username}_{date_utc}_UTC" 
filter = lambda post: post.date_utc >= datetime.datetime 
(2025, 5, 1) 
profile = loader.download_profile(user, post_filter=filter) 
 

Цей фрагмент коду спершу задає шаблон для імен файлів, які буде скачано 

в папку з нашим проєктом, далі визначає умови фільтру — пости не раніше 

1 травня 2025 року, а потім застосовує цей фільтр до завантаження даних профіля. 

Ще раз звернемо увагу, що всі вищенаведені дії проводились нами без 

реєстрації нашого додатку і без логіну під власним акаунтом. Тож багато 

можливостей по роботі з даними доступні не лише анонімно, а й навіть за 

відсутності будь-якого облікового запису в Instagram. 

Однак у випадку роботи з власним профілем, для доступу до закритих 

сторінок (де вимагається підписка), а також задля зменшення ймовірності бану й 

підвищення лімітів на скачування даних буває корисно авторизуватись. У цьому 

разі вам знадобиться реєстрація в Instagram. Маючи обліковий запис, можна 

доповнити вищенаведений код, вставивши на початку наступне: 
 
me = "..." 
pw = "..." 
loader.login(me, pw) 
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Тепер за рахунок змінної me, яка повинна містити ваш нікнейм, і pw 

(відповідно пароль) клієнт не просто запитуватиме доступ до даних, а робитиме 

це з-під вашого профіля. Це розширить набір доступних функцій, а також надасть 

права на роботу із закритими сторінками, на які ви підписані. 

 

Висновки 

У ході виконання лабораторної роботи визначено, яким чином можна 

працювати з API та вебскраперами, збирати та зберігати тексти з відкритих 

джерел із допомогою відповідних API та бібліотек. З’ясовано можливості та 

особливості різних API щодо доступу до даних. 

 

Контрольні запитання 

1.  API та робота з ними. 

2.  Особливості реєстрації та отримання доступу для роботи з API. 

3.  Особливості соцмережі X (Twitter) і роботи з Twitter API. 

4.  Можливі обмеження при доступі до різних API та шляхи розв’язання 

труднощів. 

5. Особливості соцмережі Instagram, профілів і доступу до даних у ній. 

6. Шляхи програмної взаємодії з Instagram для розробників. 

7. Бібліотека Instaloader (та аналоги) та її можливості. 

8. Типові властивості сторінок (профілів) у Instagram і доступ до них. 

9. Методи зчитування даних із Instagram у бібліотеці Instaloader. 

10. Особливості роботи зі структурою NodeIterator. 

11. Фільтрація скачуваних постів із Instagram за кількістю та за датою. 

12. Відмінності між анонімним і авторизованим доступом до Instagram API. 

13. Опрацювання текстових даних зі зчитаних повідомлень і публікацій. 

14. Опрацювання дати і часу та приведення їх до необхідного часового поясу. 

15. Вебскрапінг (вебскрейпінг). Суть і технічні особливості. 

16. Цілі застосування вебскрапінгу. 

17. Бібліотека Beautiful Soup (або її аналоги) та її особливості. 

18. Зчитування вебсторінки «як є» та чистого тексту при скрапінгу. 

 

Література 

Див. джерела №№ 6, 8. 

 



 38 

ЛАБОРАТОРНА РОБОТА 4. 

Автоматична генерація текстів 

Мета: навчитися проводити автоматичну генерацію текстів і створювати 

чат-ботів. 

 

Завдання 

Значення по індивідуальних варіантах наведено нижче в табл. 4. Варіант 

визначається як порядковий номер здобувача в загальному списку групи. 

Необхідні для ЛР вказівки та зразки коду наведено в лекціях. 

 

1. Створити новий консольний проєкт мовою Python (або іншою), при запуску 

вивести власне прізвище, ім’я, групу, номер ЛР. Встановити та імпортувати до 

проєкту бібліотеки NLTK (або аналог) і ChatterBot (версію 1.0.0 або іншу). 

2. Створити функцію, яка на вхід як аргумент приймає текст (змінну рядкового 

типу), визначає залежності між словами за ланцюгом Маркова (для кожного 

наявного слова — всі слова, які йдуть після нього) та повертає їх як словник 

(ключ — слово, значення — список наступних слів). 

3. Створити функцію генерації тексту, яка на вхід як аргумент приймає 

створений у п. 2 словник і число слів для генерації, після чого генерує текст 

заданої довжини з урахуванням залежностей зі словника та виводить його в 

консоль. 

4. Використати розроблені функції, задавши для створення словника текстовий 

файл за індивідуальним варіантом (див. табл. нижче), а для генерації тексту — 

число слів N (там само). 

5. Реалізувати чат-бота через бібліотеку ChatterBot (або аналог) за зразком із 

лекції: задати список фраз small_talk, провести навчання бота на цих фразах і 

перевірити його роботу в діалозі (мінімум — 10 фраз користувача). 

6. Завдання на максимальний бал: Провести навчання чат-бота на корпусі мовою 

за індивідуальним варіантом (див. табл. нижче) та перевірити його роботу в 

діалозі (мінімум — 10 фраз користувача). 

7. Створити ще один чат-бот через @BotFather. Задати назву, ім’я користувача 

(username), опис профіля (abouttext), опис роботи (description), встановити 

аватарку (userpic) та зберегти отриманий токен для керування ботом. 

8. Задати та запрограмувати дві команди для виконання ботом: 

 /start, яка виводить вітання та інформацію про автора (ПІБ тощо); 

 /topic, яка виводить коротку інформацію на довільну тему. 

9. Додати для виконання ботом третю команду, яка просить користувача ввести 

список чисел (мінімум 7), виконує над цим списком дію за індивідуальним 

варіантом і повертає результат опрацювання повідомленням у чат. 

10. Помістити у звіт із ЛР повний код програм(и) та скриншоти результатів 

роботи. 

 

 



 39 

Табл. 4. Індивідуальні варіанти до лабораторної роботи № 4 

№ Файл N Мова Дія 

1 alcott-women.txt 10 англійська помножити всі числа на 2 

2 austen-emma.txt 11 іспанська поділити всі числа на 3 

3 austen-persuasion.txt 12 італійська додати до всіх чисел 4 

4 austen-sense.txt 13 німецька відняти від усіх чисел 5 

5 bronte-eyre.txt 14 французька піднести числа до квадрата 

6 bronte-heights.txt 15 шведська піднести числа до куба 

7 bryant-stories.txt 16 англійська лишити тільки парні числа 

8 carroll-alice.txt 17 іспанська лишити тільки непарні числа 

9 carroll-glass.txt 18 італійська видалити більші за сер.арифм. 

10 chesterton-ball.txt 19 німецька видалити менші за сер.арифм. 

11 chesterton-brown.txt 10 французька обчислити суму елементів 

12 chesterton-thursday.txt 11 шведська обчислити добуток елементів 

13 edgeworth-parents.txt 12 англійська знайти суму парних чисел 

14 melville-moby_dick.txt 13 іспанська знайти суму непарних чисел 

15 milton-paradise.txt 14 італійська знайти добуток парних чисел 

16 alcott-women.txt 15 німецька знайти добуток непарних чисел 

17 austen-emma.txt 16 французька зробити додатні числа від’ємними 

18 austen-persuasion.txt 17 шведська зробити від’ємні числа додатними 

19 austen-sense.txt 18 англійська замінити парні числа на 0 

20 bronte-eyre.txt 19 іспанська замінити непарні числа на 0 

21 bronte-heights.txt 10 італійська зробити всі числа додатними 

22 bryant-stories.txt 11 німецька зробити всі числа від’ємними 

23 carroll-alice.txt 12 французька піднести до квадрата парні числа 

24 carroll-glass.txt 13 шведська піднести до куба непарні числа 

25 chesterton-ball.txt 14 англійська знайти суму додатних чисел 

26 chesterton-brown.txt 15 іспанська знайти суму від’ємних чисел 

27 chesterton-thursday.txt 16 італійська знайти добуток додатних чисел 

28 edgeworth-parents.txt 17 німецька знайти добуток від’ємних чисел 

29 melville-moby_dick.txt 18 французька знайти корені додатних чисел 

30 milton-paradise.txt 19 шведська піднести до куба від’ємні числа 

 

Теоретичні відомості 

Автоматична генерація текстів є важливим завданням у багатьох сферах 

сучасного життя. Класичним підходом до розв’язання цієї задачі є використання 

ланцюгів Маркова і похідних від нього моделей. 

Ланцюг Маркова, запропонований математиком А. Марковим іще в 1907–

13 рр. як «ланцюг залежних подій» — це ймовірнісна модель, яка описує 

послідовність можливих подій. При цьому будується орієнтований граф 

взаємозв’язків, де вузлами є можливі події (стани), а ребрами — ймовірність 

переходу між ними. Сума ймовірностей повинна дорівнювати одиниці (100%) для 

всіх виходів із кожного вузла. Граф може містити петлі, тобто ребра, що 

сполучають вузол із самим собою. 
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Події, які моделюються ланцюгами Маркова, вважаються випадковими, а 

кожна подія в них залежить від попередньої. Саме в цьому полягає ключова 

відмінність такого підходу від схеми Бернуллі чи наївного Баєсового алгоритму, 

які нехтують можливими взаємозалежностями заради спрощення моделі. 

Залежно від того, чи враховується лише один попередній стан (подія), чи 

більше, виділяють відповідно моделі 1-го порядку, 2-го та інших. Чим більшим є 

порядок N моделі Маркова, тим точнішими є її результати, але так само зростає і 

обчислювальна складність. Отже, для розв’язання завдань традиційно доводиться 

шукати баланс між простотою моделі та її точністю. 

У лінгвістиці ланцюги Маркова активно використовуються для завдань 

статистичного машинного перекладу. Зокрема на них базуються алгоритми 

Google Translate і його аналогів. Також ланцюги Маркова застосовують для 

виправлення помилок і автоматичної генерації тексту. 

Окремо слід сказати про виправлення помилок, можливе за допомогою цієї 

моделі. Річ у тому, що часом усі слова в реченні можуть бути написані правильно, 

проте в цілому речення є некоректним. Це відбувається через граматичні помилки 

або одруки, внаслідок яких одне слово перетворюється на інше, теж коректне, але 

яке не підходить за контекстом. Наприклад: «I need to notified the bank of this 

problem» (замість «notified» тут мало бути «notify»). Підходи на кшталт відстані 

редагування тут не допоможуть, адже вони опрацьовують кожне слово окремо. І 

лише моделі Маркова, що враховують контекст і залежності між попереднім і 

наступним словом, здатні виявити помилки такого роду. 

Щодо генерації текстів, завдання може стояти наступним чином. Є корпус 

текстів певного автора або текстів, написаних у певному стилі. Необхідно 

згенерувати подібний текст на основі наявних даних. 

Для реалізації можна спершу проаналізувати залежності між сусідніми 

словами в наявних текстах. Якщо в них неодноразово зустрічається слово «hi», і в 

30% випадків за ним іде слово «everyone», в 20% — «there», а в 50% — крапка, це 

можна подати у вигляді наступної таблиці: 

 

Табл. 5. Залежності для слова «hi» 

 everyone there . 

hi 0,3 0,2 0,5 

 

Якщо ми надалі проаналізуємо, що йде за словами «everyone», «there» тощо, 

граф буде розширюватись, а в певні моменти може також зациклитись, адже після 

слова «everyone» може йти «says», а після «says» — «hi», з якого ми почали аналіз. 

У будь-якому разі, обсяг інформації в таблиці буде також збільшуватись. Аби 

відобразити в ній усі можливі пари слів (оскільки теоретично після будь-якого 

одного слова може йти будь-яке інше), нам доведеться сформувати квадратну 

двовимірну матрицю переходів («transition matrix»). У ній кількість рядків буде 

дорівнювати кількості стовпців, і в них міститиметься перелік унікальних слів, які 

зустрічаються в заданому наборі текстів. Натомість кожна комірка всередині 
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зберігатиме в собі ймовірність pij переходу від слова i до слова j. Ось як може 

виглядати приклад такої матриці переходів для набору з 9 унікальних слів: 

 

Табл. 6. Матриця переходів для набору з 9 унікальних слів 

0,2 0 0,1 0 0,1 0,1 0 0,3 0,2 

1 0 0 0 0 0 0 0 0 

0,5 0 0,1 0,3 0 0,1 0 0 0 

0 0 0,4 0,2 0,4 0 0 0 0 

0 0 0 0,25 0,25 0,5 0 0 0 

0,2 0,1 0 0,1 0 0,2 0,2 0,1 0,1 

0 0 0,2 0 0 0,2 0 0,6 0 

0,2 0 0,2 0,4 0 0 0 0,2 0 

0 0 0,75 0 0 0,25 0 0 0 

 

Як бачимо, сума ймовірностей по кожному рядку дорівнює 1, як цього й 

вимагає модель Маркова. Використовуючи цю матрицю переходів, у подальшому 

можливо генерувати текст згідно з виявленими в ній залежностями. Тобто якщо в 

реальному наборі текстів після слова i з імовірністю pij йде слово j, так само часто 

будемо ставити його після i наступним і у згенерованих нами текстах. 

Перейдемо до одного з можливих варіантів реалізації алгоритму генерації 

тексту на основі ланцюгів Маркова за допомогою мови Python. Спершу створимо 

словник, у якому ключами будуть поточні стани (слово i), а значеннями — 

наступні стани (слово j). Далі напишемо функцію генерації наступного стану із 

заданих альтернатив за ймовірностями, зазначеними у цьому словнику. 

Ось як може виглядати функція, що створює модель Маркова за поданими 

текстами: 

 
from collections import defaultdict 
 
def markov_chain(text): 
    words = text.split() 
    my_dict = defaultdict(list) 
    for current_word, next_word in zip(words[0:-1], words[1:]): 
        my_dict[current_word].append(next_word) 
    my_dict = dict(my_dict) 
    return my_dict 

 

Далі перевіримо роботу цієї функції на певному короткому тексті test_text: 

 
test_dict = markov_chain(test_text) 
for word in test_dict: 
    print(word, test_dict[word]) 

 

Після такого виклику функції для поданого тексту буде згенеровано 

ланцюги Маркова, а обчислені залежності виведуться на екран. Результат може 

бути наступним (тут наведено лише фрагмент виведення): 
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I ['am', 'am.', 'do'] 
Hi ['everyone.', 'everybody.', 'there!'] 
Everyone ['says', 'says'] 

 

Отже, для кожного слова було збережено всі можливі слова-наступники. 

Зверніть увагу, що оскільки розбиття тексту на слова проводилося за пробілами 

через звичайну функцію .split(), то всі розділові знаки, що йшли після слів, 

лишилися при них і у словнику. Це може бути як недоліком, так і перевагою. 

Незручністю такого підходу є те, що якщо нам не потрібна пунктуація з 

оригінальних текстів, її доведеться вичищати окремо. Також у нас дублюються 

ключі з усіма можливими розділовими знаками після них. 

Натомість із іншого боку це не заважає нам генерувати тексти за такими 

залежностями, а навіть навпаки: після крапки чи знаку оклику завжди буде 

автоматично генеруватися слово з великої літери, а після коми чи пробілу — з 

малої, адже саме так і було в реальних текстах. 

Також цікаво, що серед значень є взагалі повні дублі (наприклад, «says»). 

Так сталось через те, що в алгоритмі ми лише доповнюємо значення новими через 

функцію .append(), не перевіряючи, чи такі вже були записані. І це теж можна 

оцінити як негативно, так і позитивно. 

Недоліком є те, що наявність таких дублів марнує ресурси, зокрема пам'ять 

для їх збереження, а також надалі витрачає час на проходження довшого списку 

значень. 

Однак перевага полягає в тому, що за рахунок запису всіх без винятків слів-

наступників у нас зберігається повна статистика щодо частоти кожного випадку. 

Справді, якщо в подальшому генерувати для ключа наступне слово, беручи 

варіанти зі списку значень випадковим чином, алгоритм потраплятиме на той чи 

інший варіант пропорційно до оригінальної статистики. Якщо після слова i 9 разів 

зустрілось j1 і лише 1 раз — j2, то й генератор у 90% випадків поставить після i 

саме j1, і т.д. 

Таким чином, при цьому підході ми не надто раціонально використовуємо 

пам'ять через наявність дублів, однак зате не мусимо обчислювати та зберігати 

матрицю переходів, на що теж був би потрібен час.  При цьому більшість комірок 

у таких матрицях у будь-якому разі містять нулі, адже після кожного конкретного 

слова i в реальності може зустрітись далеко не кожне слово j. 

Перейдемо до останнього етапу роботи — власне генерації речень. Вона 

може бути реалізована, наприклад, так: 

 
import random 
 
def generate_sentence(chain, word_count): 
    cur_word = random.choice(list(chain.keys())) 
    sentence = cur_word.capitalize() 
    for i in range(word_count-1): 
        next_word = random.choice(chain[cur_word]) 
        sentence += " " + next_word 
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        cur_word = next_word 
    sentence += "." 
    return sentence 

 

Функція приймає на вхід вищеописаний словник, що містить ланцюги 

Маркова (аргумент chain), а також необхідну кількість слів для генерації речення 

(word_count). На початку ми випадковим чином беремо перше слово речення з 

ключів словника та пишемо його з великої літери. 

Наступне слово береться теж випадковим чином уже зі значень у словнику 

для цього ключа. Між словами ставиться пробіл, а наступне слово приймається за 

поточне, після чого цей цикл повторюється стільки разів, щоби речення містило 

потрібну нам кількість слів. Речення завершується крапкою та повертається на 

вихід функції. 

Перевіримо роботу функції на ланцюгах Маркова, отриманих у прикладі 

вище: 

 
print(generate_sentence(test_dict, 8)) 

 

Результат може виглядати так: 

 
Everything is going on here? Tell me. I. 

 

Як видно, з розділовими знаками тут усе в порядку через особливості 

розбиття речення на слова, описані вище. Також, якщо проаналізувати кожну пару 

слів, вона є цілком схожою на те, що можна зустріти в реальному мовленні. 

Тим не менше, щойно ми почнемо дивитися відразу на три чи більше 

сусідні слова, виявиться, що результат є вже не таким коректним і 

правдоподібним. Причина криється в тому, що ми використали модель Маркова 

1-го порядку, яка враховує лише зв’язки між парами суміжних слів, але не більше. 

Лише при використанні складніших моделей нам вдалося б отримати результат, 

більш наближений до реальних текстів, написаних людьми. 

Можна частково покращити генерацію речень за рахунок використання 

більших обсягів текстів, які приймаються на вхід при створенні моделі. Скажімо, 

якщо ми візьмемо текстовий файл із книгою «Аліса у Дивокраї» та побудуємо 

ланцюги Маркова для нього, результат може вийти, наприклад, таким: 

 
Duchess! Oh my dear! I like a telescope.' 

 

Як бачимо, лексика стала багатшою, можна зустріти деякі мовні звороти, 

однак також можливі й деякі граматичні помилки, не кажучи про відсутність 

послідовності в пунктуації тощо. 

Таким чином, вхідний текст і його обсяг впливає на отримані результати, 

проте, на жаль, не знімає фундаментальних обмежень, викликаних вимушеною 

спрощеністю нашої моделі. 
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Висновки 

У ході виконання лабораторної роботи визначено, яким чином можна 

проводити автоматичну генерацію текстів і створювати чат-ботів. 

 

Контрольні запитання 

1. Ланцюги Маркова. Історія та суть поняття. 

2. Граф взаємозв’язків у ланцюгах Маркова. 

3. Моделі Маркова 1-го та інших порядків. 

4. Особливості моделі Маркова. 

5. Варіанти (приклади) застосування моделі Маркова в лінгвістиці. 

6. Виправлення помилок у тексті завдяки моделі Маркова. 

7. Процес генерації тексту на основі моделі Маркова. Матриця переходів. 

8. Особливості реалізації моделі Маркова мовою Python. 

9. Генерація тексту на основі текстового корпусу. 

10. Чат-боти та їх застосування в сучасному світі. 

11. Особливості бібліотеки ChatterBot. 

12. Процес навчання (тренування) чат-бота. Джерела даних для навчання. 

13. Застосування генерації тексту для інших завдань, крім чат-ботів. 

14. Суть і принцип роботи моделі GPT. 

15. Особливості моделі GPT. 

16. Шляхи застосування GPT. 

17. Якість роботи та недоліки GPT. 

18. Пошук інформації за допомогою GPT. 

19. Генерація коду за допомогою GPT. 

20. Аналоги моделі GPT. 

21. ChatGPT. 
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ДОДАТОК Б. КОНТРОЛЬ ТА ОЦІНЮВАННЯ 

РЕЗУЛЬТАТІВ НАВЧАННЯ 

Контроль та оцінювання результатів навчання за елементами 

змістових модулів здобувачів (денна форма здобуття освіти) 

(форма підсумкового контролю - диференційований залік) 

Таблиця Б.1 

№ 

елем. 

зміс-

тового 

модуля 

Елементи змістового модуля 

Кількість балів 

Поточний контроль 

навчальної роботи 

здобувачів 

міні-

мальна 

макси-

мальна 
методи контролю 

 

1 2 3 4 5 

Модуль 1 

1. 
Лекційний курс. Теми 1–6 3 5 

Письмова 

контрольна робота 

Лабораторна робота 1.  

Semantic Web і визначення 

подібності слів 

9 15 
Виконання і захист 

лабораторної роботи 

Лабораторна робота 2. 

Автоматичне опрацювання 

текстів 

9 15 
Виконання і захист 

лабораторної роботи 

Всього 21 35  

2. Лекційний курс. Теми 7–10 
3 5 

Письмова 

контрольна робота 

Лабораторна робота 3. 

Автоматичне збирання текстів 
9 15 

Виконання і захист 

лабораторної роботи 

Лабораторна робота 4.  

Автоматична генерація текстів 
9 15 

Виконання і захист 

лабораторної роботи 

Всього 21 35  

 Разом за модулем 42,0 70,0  

 Диф. залік 18,0 30,0  

 Усього за семестр 60 100  

 

Критерії оцінювання програмних результатів навчання здобувачів 

денної форми здобуття освіти за окремими елементами змістових модулів 

Таблиця Б.2 

Елемент модуля та критерії його оцінювання Кількість балів 

Лабораторна робота 15 

Робота відпрацьована та вчасно захищена, надані повні обґрунтовані 

відповіді 

15 
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Робота відпрацьована та вчасно захищена, при відповіді допущені 

неточності 

12 

Робота відпрацьована, відповіді неповні, допущені помилки 9 

Робота відпрацьована, відповіді незадовільні, допущені грубі 

помилки 

3...8 

Робота не відпрацьована або дані незадовільні відповіді 0 

  

Письмова контрольна робота 5 

У роботі надано повні обґрунтовані відповіді 5 

Відповіді неповні, допущено помилки 4 

Відповіді неповні, допущено суттєві помилки 3 

Дано незадовільні відповіді 0...2 

 

Критерії оцінювання програмних результатів навчання 

здобувачів денної форми здобуття освіти  

(форма підсумкового контролю — диференційований залік) 

27...30 балів — якщо здобувач демонструє повні й глибокі знання 

навчального матеріалу, достовірний рівень розвитку умінь і навичок, правильне й 

обґрунтоване формулювання практичних висновків, уміння приймати необхідні 

рішення в різних нестандартних ситуаціях, вільне володіння науковими 

термінами, високу комунікативну культуру. 

23...26 балів — якщо здобувач виявляє дещо обмежені знання навчального 

матеріалу, допускає окремі несуттєві помилки й неточності; 

18...22 бали — якщо здобувач засвоїв основний навчальний матеріал, володіє 

необхідними уміннями та навичками для вирішення стандартних завдань, проте 

при цьому допускає неточності, не виявляє самостійності суджень, демонструє 

недоліки комунікативної культури. 

0...17 балів — якщо здобувач не володіє необхідними знаннями, уміннями й 

навичками, науковими термінами, демонструє низький рівень комунікативної 

культури. 
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